GCE August 2020 – 502, Linear Algebra No documents, no calculators allowed. Attempt all questions.

- 1. Let V be an n-dimensional vector space over \mathbb{C} , and let $T: V \to V$ be a linear operator.
 - (a) Define $\ker(T)$ and $\operatorname{Im}(T)$. State the Rank-Nullity Theorem.
 - (b) Give an example of an operator T such that V is not the direct sum of the subspaces $\ker(T)$ and $\operatorname{Im}(T)$. (Hint: Consider the space of polynomials of degree $\leq n-1$, and let T be the differentiation operator.)
 - (c) Prove that V is the direct sum of $\ker(T^n)$ and $\operatorname{Im}(T^n)$.
- 2. Prove that $A \in \operatorname{GL}_n(\mathbb{C})$ is invertible if and only if the minimum polynomial of A has a non-zero constant term. Under this condition, express A^{-1} as a polynomial function of A.
- 3. Let $f: M \mapsto \frac{1}{2} (M + M^{\top})$ be an operator on $n \times n$ matrices.
 - (a) Prove that f is linear, and that $f^2 = f$.
 - (b) Show that all eigenvalues of f belong to $\{0, 1\}$.
 - (c) Describe the eigenspaces of f.
- 4. Let V be \mathbb{R}^n equipped with the standard inner product. For an arbitrary subspace U of V, let $U^{\perp} = \{v \in V \mid \langle u, v \rangle = 0 \text{ for all } u \in U\}.$
 - (a) Show that $U \cap U^{\perp} = \{0\}.$
 - (b) Show that $U \oplus U^{\perp} = V$.
 - (c) Show $(U^{\perp})^{\perp} = U$.
 - (d) Which of these statements remain true over a field of positive characteristic?
- 5. Let V be the vector space of continuous, integrable functions $f : [-1,1] \to \mathbb{R}$ equipped with inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$.
 - (a) Prove that the only function satisfying $\langle f, f \rangle = 0$ is the zero function.
 - (b) Find the projection of $f(x) = x^2 + 1$ onto the subspace $\langle 1, x \rangle$.
 - (c) Compute the cosine of the angle between the functions $x^2 + 1$ and x with respect to the given inner product.
- 6. Let $A \in \mathbb{R}^{m \times n}$ and $B = \mathbb{R}^{n \times m}$. Prove that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$