1. Let V be an n-dimensional vector space over \mathbb{C}, and let $T: V \rightarrow V$ be a linear operator.
(a) Define $\operatorname{ker}(T)$ and $\operatorname{Im}(T)$. State the Rank-Nullity Theorem.
(b) Give an example of an operator T such that V is not the direct sum of the subspaces $\operatorname{ker}(T)$ and $\operatorname{Im}(T)$. (Hint: Consider the space of polynomials of degree $\leq n-1$, and let T be the differentiation operator.)
(c) Prove that V is the direct sum of $\operatorname{ker}\left(T^{n}\right)$ and $\operatorname{Im}\left(T^{n}\right)$.
2. Prove that $A \in \mathrm{GL}_{n}(\mathbb{C})$ is invertible if and only if the minimum polynomial of A has a non-zero constant term. Under this condition, express A^{-1} as a polynomial function of A.
3. Let $f: M \mapsto \frac{1}{2}\left(M+M^{\top}\right)$ be an operator on $n \times n$ matrices.
(a) Prove that f is linear, and that $f^{2}=f$.
(b) Show that all eigenvalues of f belong to $\{0,1\}$.
(c) Describe the eigenspaces of f.
4. Let V be \mathbb{R}^{n} equipped with the standard inner product. For an arbitrary subspace U of V, let $U^{\perp}=\{v \in V \mid\langle u, v\rangle=0$ for all $u \in U\}$.
(a) Show that $U \cap U^{\perp}=\{0\}$.
(b) Show that $U \oplus U^{\perp}=V$.
(c) Show $\left(U^{\perp}\right)^{\perp}=U$.
(d) Which of these statements remain true over a field of positive characteristic?
5. Let V be the vector space of continuous, integrable functions $f:[-1,1] \rightarrow \mathbb{R}$ equipped with inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) \mathrm{dx}$.
(a) Prove that the only function satisfying $\langle f, f\rangle=0$ is the zero function.
(b) Find the projection of $f(x)=x^{2}+1$ onto the subspace $\langle 1, x\rangle$.
(c) Compute the cosine of the angle between the functions $x^{2}+1$ and x with respect to the given inner product.
6. Let $A \in \mathbb{R}^{m \times n}$ and $B=\mathbb{R}^{n \times m}$. Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
