WPI Department of Mathematical Sciences 503 GCE
 August, 2020

Name: \qquad

Exercise 1:

Let (X, ρ) be a metric space and S and T two non-empty subsets of X. Define

$$
d(S, T)=\max \left\{\sup _{x \in S} \inf _{y \in T} \rho(x, y), \sup _{y \in T} \inf _{x \in S} \rho(x, y)\right\} .
$$

Show that $d(S, T)=0$ if and only if S and T have the same closure.
Exercise 2:
Show that for every set $S \subset \mathbb{R}$ there exists a Borel set B such that $S \subset B$ and $m^{*}(S)=$ $m^{*}(B)$, where m^{*} is the Lebesgue outer measure. Then show that for such S and B with $m^{*}(S)<\infty, S$ is measurable if and only if $m^{*}(B \backslash S)=0$.

Exercise 3:

Suppose f_{n}, g_{n} are Lebesgue measurable functions on \mathbb{R}, with $f_{n}, g_{n} \geq 0 \forall n \in \mathbb{N}$. Suppose also that $f_{n} \rightarrow f$ a.e., $g_{n} \rightarrow g$ a.e.,

$$
\int f_{n} \rightarrow \int f<\infty
$$

and

$$
\int g_{n} \rightarrow \int g<\infty .
$$

Prove or give a counterexample: if $\left\{f_{n} g_{n}\right\}$ is bounded in L^{1}, then

$$
\int f_{n} g_{n} \rightarrow \int f g
$$

