WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics II August, 2020

Note: The problems are arbitrarily ordered, not necessarily according to difficulty. Please show a clear logic of your solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. (20 points) The shifted Exponential: Let X_1, \dots, X_n be a random sample from the density

$$f(x|\theta, \alpha) = \frac{1}{\theta} \exp(-\frac{x-\alpha}{\theta})I(\alpha, \infty)(x),$$

for $\theta > 0$ and real α . Suppose θ and α are unknown.

- (a) Derive the MLE for (θ, α) . Hint: First find the MLE for α , then use it to find the MLE for θ .
- (b) Derive the method of moment estimator for (θ, α) .
- 2. (20 points) Let X_1, X_2, \ldots, X_n be *iid* with one of two probability density functions. If $\theta = 0$, then

$$f(x|\theta) = \begin{cases} 1 & 0 \le x \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

and if $\theta = 1$, then

$$f(x|\theta) = \begin{cases} \frac{1}{2\sqrt{x}} & 0 \le x \le 1, \\ 0 & \text{otherwise} \end{cases}.$$

Find the maximum likelihood estimator of θ .

3. (20 points) Let $\{\varepsilon_j, j = 1, 2, \ldots\}$, $\{X_j, j = 1, 2, \ldots\}$, and $\{Y_j, j = 1, 2, \ldots\}$ be three independent sequences of iid random variables with

$$X_j \sim N(\mu_1, 1), \ Y_j \sim N(\mu_2, 1), \ P(\varepsilon_j = 0) = P(\varepsilon_j = 1) = 1/2,$$

where μ_1 and μ_2 are unknown parameters, and $\mu_1 > \mu_2$. Suppose that the mixture $W_j = \varepsilon_j X_j + (1 - \varepsilon_j) Y_j$ is observed for j = 1, ..., n, but ε_j, X_j , and $Y_j, j = 1, ..., n$ can not be observed.

- 1. Find $E(W_j)$ and $E(W_j^2)$.
- 2. Construct consistent estimators for μ_1 and μ_2 respectively based on $\{W_1, \ldots, W_n\}$. (Hint: Use the method of moments.)
- 4. (20 points) Consider testing simple hypotheses $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$ based on a random sample with continuous distribution. The likelihood function satisfies $L(\theta_1|x) > L(\theta_0|x)$, where $x = (x_1, \dots, x_n)$.

- (a) Give the general definitions of the power function, the size- α test, and the uniformly most powerful (UMP) size- α test, and their meanings in the context of above hypothesis testing.
- (b) In the context of above hypothesis testing, prove that the likelihood ratio test with size α is a UMP size- α test.
- (c) In the context of above hypothesis testing, prove that any UMP size- α test is equivalent to the likelihood ratio test almost surely (when they exist).
- 5. (20 points) Let $X, Y \stackrel{ind}{\sim} \text{Gamma}(1, \theta)$ and suppose a scientist uses T = X Y to make inference about θ . What is the shortest $100(1 - \alpha)\%$ confidence interval the scientist can obtain? What advice can you give the scientist in terms of a better confidence interval? Give your solution. $[f(x) = \theta e^{-\theta x}, x \ge 0.]$
- 6. (20 points) Let $X_1, \ldots, X_n \mid \mu \stackrel{ind}{\sim} \operatorname{Normal}(\mu, \sigma^2)$, where σ^2 is known. Find $\operatorname{E}\{\Phi(\bar{X})\}$, where \bar{X} is the sample mean. What optimality property does the estimator, $\Phi(\bar{X})$, have? Find an approximate value of $\operatorname{Var}\{\Phi(\bar{X})\}$ and say how you might estimate it approximately.