Mathematics in Computer Graphics and Games

Prof Emmanuel Agu

Computer Science Dept.
Worcester Polytechnic Institute (WPI)

About Me

- Professor in WPI Computer Science Dept
- Grad school at Umass Amherst (MS, PhD)
- Research in Computer graphics for 20 years
- Teaching computer graphics for 14 years

What is Computer Graphics (CG)?

- Computer graphics: algorithms, mathematics, programs that computer uses to generate PRETTY PICTURES
- E.g Techniques to draw a line, polygon, cube

Computer-Generated! Not a picture!

Uses of Computer Graphics

- Entertainment: games

Courtesy: Super Mario Galaxy 2

Courtesy: Final Fantasy XIV

Uses of Computer Graphics

- movies, TV (special effects, animated characters)

Courtesy: Shrek

Courtesy: Spiderman
Note: Games and Movie industries Are two biggest hirers of computer Graphics professionals!!

Uses of Computer Graphics

- Displaying Mathematical Functions
- E.g., Mathematica ${ }^{\circ}$

2 Main Career Paths in Computer Graphics

1. Artist: Designs characters

No math skills required!!

2. Programmer: Writes programs to Make characters move, talk, etc

Lots of math, programming skills required!!

Your students probably
Follow programmer path

Some High School Math Used in CG

- Geometry
- Linear algebra: Matrices, vectors
- Trigonometry
- Complex numbers
- Boolean logic
- Probability

Fractals

- Mathematical expressions to generate pretty pictures
- Evaluate math functions to create drawings
- Evaluated function approached infinity -> converge to image
- i.e $f(1), f(2), f(3)$........ $F(\infty)$
- Fractal image exhibits self-similarity: See similar sub-images within image as we zoom in

Sierpinski Gasket: Popular Fractal

Start with initial triangle with corners

1. Pick initial point $\mathbf{p}=(x, y)$ at random inside triangle
2. Randomly select 1 of 3 vertices
3. Find \mathbf{q}, halfway between \mathbf{p} and randomly selected vertex
4. Draw dot at \mathbf{q}
5. Replace \mathbf{p} with \mathbf{q}
6. Return to step 2

Example: Fractal Terrain

Terrain designed with only fractals

Example: Fractal Art

Courtesy: Internet
Fractal Art Contest

Example: Mandelbrot Set

Mandelbrot Set

- Function of interest:

$$
f(z)=(s)^{2}+c
$$

- Pick constants s and c
- Orbit: sequence of values (i.e $d_{1}, d_{2}, d_{3}, d_{4}$ etc):

$$
\begin{aligned}
& d_{1}=(s)^{2}+c \\
& d_{2}=\left((s)^{2}+c\right)^{2}+c \\
& d_{3}=\left(\left((s)^{2}+c\right)^{2}+c\right)^{2}+c \\
& d_{4}=\left(\left(\left((s)^{2}+c\right)^{2}+c\right)^{2}+c\right)^{2}+c
\end{aligned}
$$

- Question: does the orbit converge to a value?

Mandelbrot Set

- Examples orbits:
- $s=0, c=-1$, orbit $=0,-1,0,-1,0,-1,0,-1, \ldots .$. finite
- $s=0, c=1$, orbit $=0,1,2,5,26,677 \ldots .$. explodes
- Orbit depends on s and c
- Basic question:
- For given s and c,
- does function stay finite? (within Mandelbrot set)
- explode to infinity? (outside Mandelbrot set)
- Definition: if $|d|<2$, orbit is finite else inifinite

Mandelbrot Set

- Mandelbrot set: use complex numbers for c and s
- Set $s=0, c$ as a complex number
- E.g: $s=0, c=0.2+0.5 i$
- Definition: Mandelbrot set includes all finite orbit c
- Mandelbrot set program:
- Choose s and c,
- program calculates $d_{1}, d_{2}, d_{3}, d_{4}$ and tests if they are finite
- Choose colors

Values of c in mandelbrot set

Other Fractal Examples

Gingerbread Man

The Fern

Geometric Representations: 3D Shapes

- Generated using closed form geometric equations
- Example: Sphere

$$
x^{2}+y^{2}+z^{2}=R^{2},
$$

- Problem: A bit restrictive to design real world scenes made of spheres, cones, etc

Geometric Representations: Meshes

- Collection of polygons, or faces, that form "skin" of object
- More flexible, represents complex surfaces better
- Mesh? List of (x, y, z) points + connectivity
- Digitize real objects: very fine mesh

Each face of mesh is a polygon

Digitized mesh of statue of Lucy: 28 million faces

Affine Transformations

a) the barn

- Translation
- Scaling
- Rotation
- Shear

Rotate object

Affine Transforms: General Approach

- We can transform (translation, scaling, rotation, shearing, etc) object by applying matrix multiplications to object vertices

- Note: point (x, y, z) needs to be represented as ($x, y, z, 1$), also called Homogeneous coordinates

3D Translation using Matrices

- Move each object vertex by same distance $\mathbf{d}=\left(\mathbf{d}_{x}, d_{y}, d_{z}\right)$
- Example: If we translate a point $(2,2,2)$ by displacement $(2,4,6)$, new location of point is $(4,6,8)$

-Translate $\mathrm{x}: 2+2=4$
-Translate $\mathrm{y}: 2+4=6$
-Translate z: $2+6=4$

Translate object

$$
\begin{aligned}
& \qquad\left(\begin{array}{l}
4 \\
6 \\
8 \\
1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
2 \\
2 \\
2 \\
1
\end{array}\right) \\
& \begin{array}{l}
\text { Translated } \\
\text { point }
\end{array} \\
& \text { Translation } \\
& \text { Matrix }
\end{aligned} \begin{aligned}
& \text { Original } \\
& \text { point }
\end{aligned}
$$

General form

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{lllc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right) *\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

Scaling Transform

- Expand or contract along each axis (fixed point of origin)
- Example: If we scale a point $(2,4,6)$ by scaling factor $(0.5,0.5,0.5)$ Scaled point position $=(1,2,3)$
-Scaled x : $2 \times 0.5=1$
-Scaled y: $4 \times 0.5=2$
-Scaled z: $6 \times 0.5=3$

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{cccc}
0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{l}
2 \\
4 \\
6 \\
1
\end{array}\right)
$$

Scale Matrix for
Scale(0.5, 0.5, 0.5)

$$
\begin{gathered}
\text { General Form } \\
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{cccc}
S_{x} & 0 & 0 & 0 \\
0 & S_{y} & 0 & 0 \\
0 & 0 & S_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \times\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
\end{gathered}
$$

Why Matrices?

- Sequence of transform matrices can be pre-multiplied
- One final resulting matrix applied (efficient!)
- E.g. transform $1 \times$ transform 2

- Computer graphics card has fast 4×4 matrix multiplier!!!

Why do we need Shading?

- Sphere without lighting \& shading:
- Sphere with shading:
- Has visual cues for humans (shape, light position, viewer position, surface orientation, material properties, etc)

What Causes Shading?

- Shading caused by different angles with light, camera at different points

Calculating Shade

- Based on Lambert's Law: $\mathrm{D}=\mathrm{I} \times \mathrm{k}_{\mathrm{D}} \cos (\theta)$
- Calculate shade based on angle θ

Receive more light

Receive less light

- Represent light direction, surface orientation as vectors
- Calculate θ ? Angle between 2 vectors

Shading: Diffuse Light Example

Different parts of each object receives different amounts of light

References

- Angel and Shreiner, Interactive Computer Graphics (6 ${ }^{\text {th }}$ edition), Chapter 1
- Hill and Kelley, Computer Graphics using OpenGL (3 ${ }^{\text {rd }}$ edition), Chapter 1

