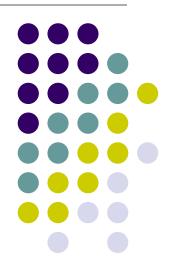
Mathematics in Computer Graphics and Games

Prof Emmanuel Agu

Computer Science Dept. Worcester Polytechnic Institute (WPI)



About Me

- Professor in WPI Computer Science Dept
- Grad school at Umass Amherst (MS, PhD)
 - Research in Computer graphics for 20 years
 - Taught computer graphics for 16 years

What is Computer Graphics (CG)?

- Computer graphics: algorithms, mathematics, programs that
 computer uses to generate PRETTY PICTURES
- E.g Techniques to draw a line, polygon, cube

Computer-Generated!
Not a picture!

Uses of Computer Graphics

• Entertainment: games

Courtesy: Final Fantasy XIV

Courtesy: Super Mario Galaxy 2

Uses of Computer Graphics

movies, TV (special effects, animated characters)

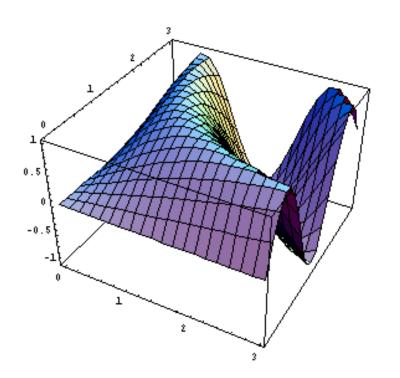
Courtesy: Shrek

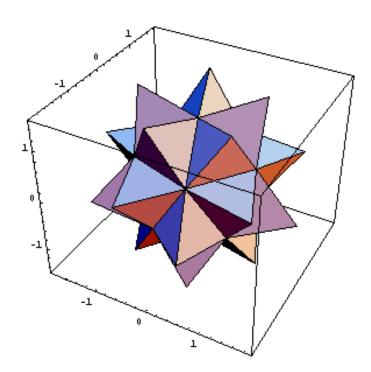
Courtesy: Spiderman

Note: Games and Movie industries Are two biggest hirers of computer Graphics professionals!!

Uses of Computer Graphics

- Displaying Mathematical Functions
 - E.g., Mathematica®





2 Main Career Paths in Computer Graphics



1. Artist: Designs characters

Clicking, dragging, artsy! No math skills required!!

2. Programmer: Writes programs to Make characters move, talk, etc

Math, programming skills required!!

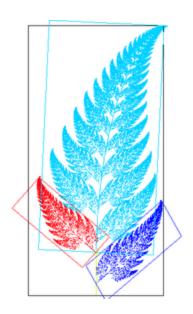
Your students probably Follow programmer path

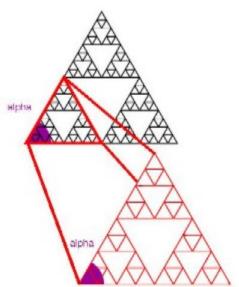
Some High School Math Used in CG

- Geometry
- Linear algebra: Matrices, vectors
- Trigonometry
- Complex numbers
- Boolean logic
- Probability

Fractals

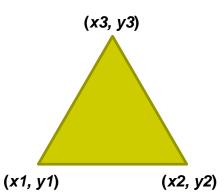
- Mathematical expressions to generate pretty pictures
- Evaluate math functions to create drawings
 - Evaluated function approached infinity -> converge to image
 - i.e f(1), f(2), f(3)...... $F(\infty)$
- Fractal image exhibits self-similarity: See similar sub-images within image as we zoom in



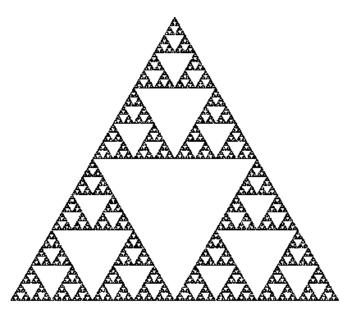


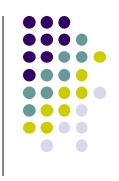
Sierpinski Gasket: Popular Fractal

Start with initial triangle with corners



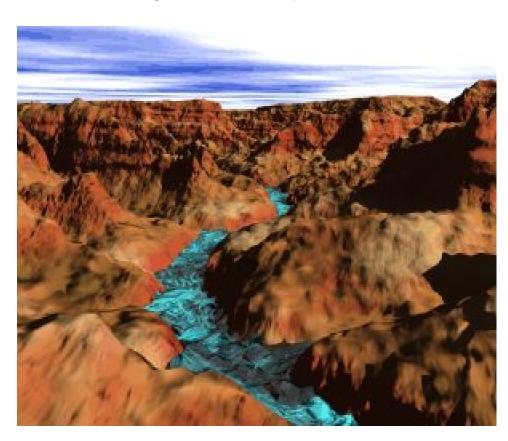
- 1. Pick initial point $\mathbf{p} = (x, y)$ at random inside triangle
- 2. Randomly select 1 of 3 vertices
- 3. Find **q**, halfway between **p** and randomly selected vertex
- 4. Draw dot at **q**
- 5. Replace **p** with **q**
- 6. Return to step 2



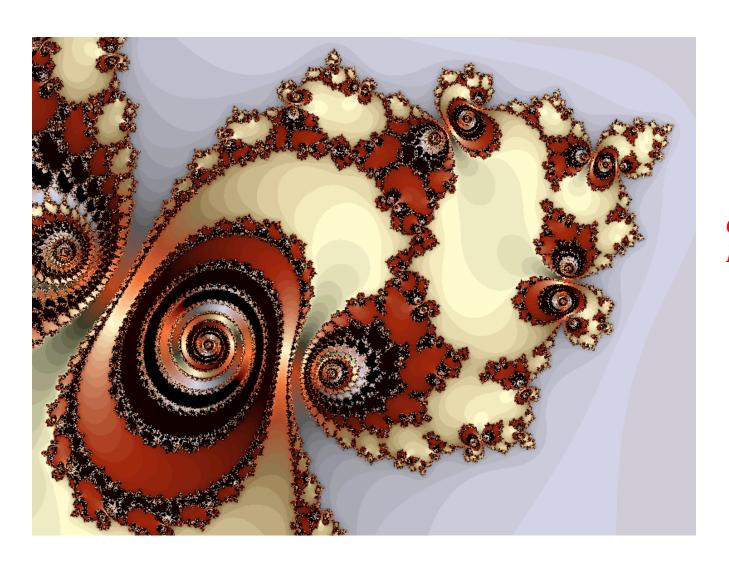


Example: Fractal Terrain

Terrain designed with only fractals

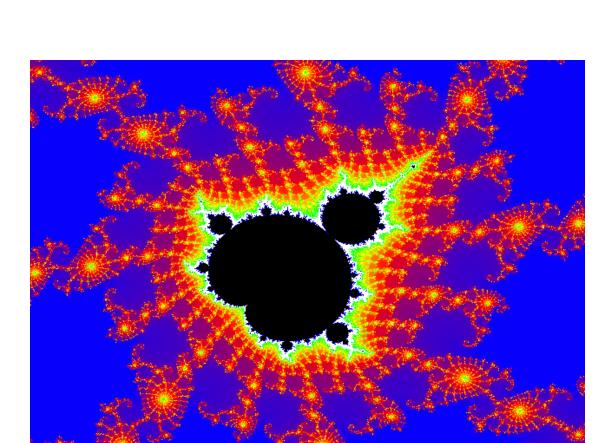


Example: Fractal Art



Courtesy: Internet Fractal Art Contest

Example: Mandelbrot Set



Mandelbrot Set

$$f(z) = (s)^2 + c$$

- Pick constants s and c
- **Orbit:** sequence of values (i.e d_1 , d_2 , d_3 , d_4 , etc):

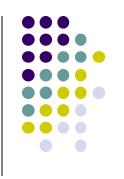
$$d_1 = (s)^2 + c$$

$$d_2 = ((s)^2 + c)^2 + c$$

$$d_3 = (((s)^2 + c)^2 + c)^2 + c$$

$$d_4 = ((((s)^2 + c)^2 + c)^2 + c)^2 + c$$

Question: does the orbit converge to a value?

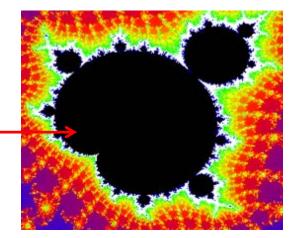


Mandelbrot Set

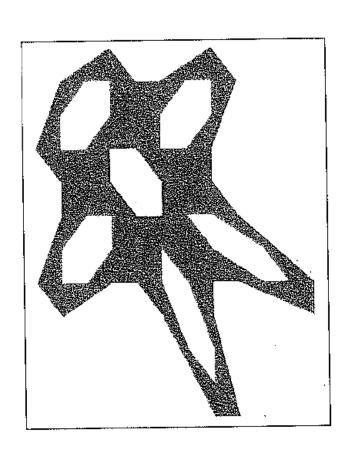
- Examples orbits:
 - s = 0, c = -1, orbit = 0,-1,0,-1,0,-1,0,-1,.....finite
 - s = 0, c = 1, orbit = 0,1,2,5,26,677..... *explodes*
- Orbit depends on s and c
- Basic question:
 - For given s and c,
 - does function stay finite? (within Mandelbrot set)
 - explode to infinity? (outside Mandelbrot set)
- Definition: if |d| < 2, for 1st 100 terms, orbit is finite else inifinite

Mandelbrot Set

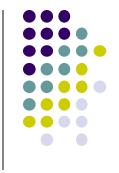
- Mandelbrot set: use complex numbers for c and s
- Set s = 0, c as a complex number
- E.g: s = 0, c = 0.2 + 0.5i
- Definition: Mandelbrot set includes all finite orbit c
- Mandelbrot set program:
 - Choose s and c,
 - program calculates d_1 , d_2 , d_3 , d_4 and tests if they are finite
 - Choose colors



Values of c in mandelbrot set



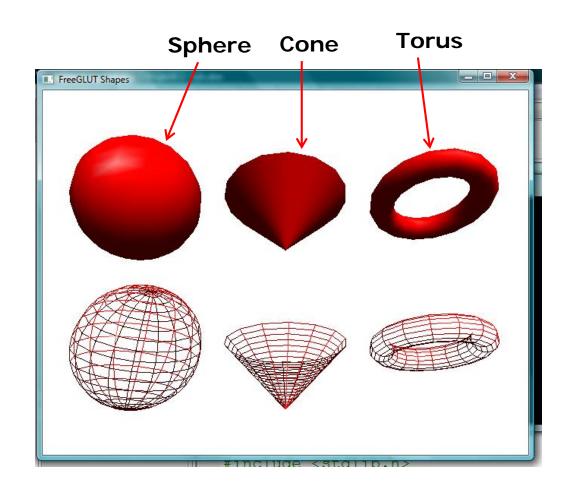
Gingerbread Man



- Can generate shapes using closed form geometric equations
- Example: Sphere

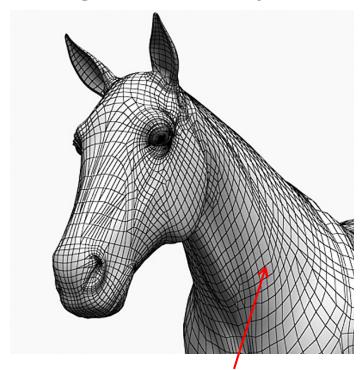
$$x^2 + y^2 + z^2 = R^2,$$

Problem: A bit
 restrictive to design
 real world scenes made
 of spheres, cones, etc



Geometric Representations: Meshes

- Collection of polygons, or faces, that form "skin" of object
- More flexible, represents complex surfaces better
- Mesh? List of (x,y,z) points + connectivity
- Digitize real objects: very fine mesh

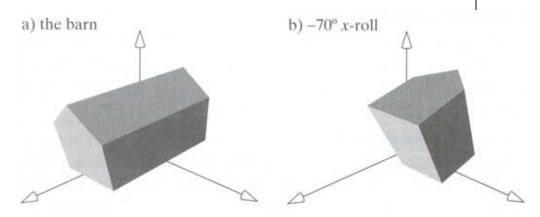


Each face of mesh is a polygon

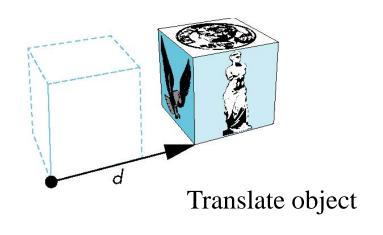
Digitized mesh of statue of Lucy: 28 million faces

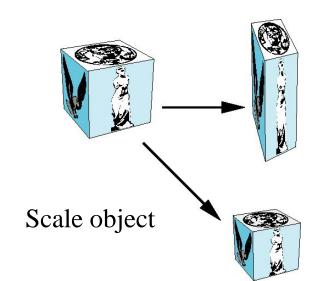
Affine Transformations

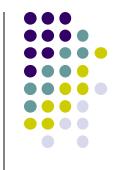
- Translation
- Scaling
- Rotation
- Shear



Rotate object







We can transform (translation, scaling, rotation, shearing, etc)
 object by applying matrix multiplications to object vertices

$$\begin{pmatrix} P_{x}' \\ P_{y}' \\ P_{z}' \\ 1 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \\ 1 \end{pmatrix}$$
Original Vertex

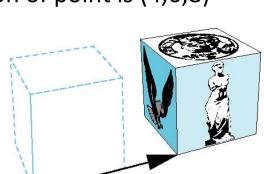
Transformed Vertex

Transform Matrix (e.g. rotate, translate, scale, etc)

 Note: point (x,y,z) needs to be represented as (x,y,z,1), also called Homogeneous coordinates

3D Translation using Matrices

- Move each object vertex by same distance d = (d_x, d_y, d_z)
- **Example:** If we translate a point (2,2,2) by displacement (2,4,6), new location of point is (4,6,8)



Translate object

$$\begin{pmatrix} 4 \\ 6 \\ 8 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$

Translated point

Translation Matrix

Original point

■Translate x: 2 + 2 = 4

■Translate y: 2 + 4 = 6

■Translate z: 2 + 6 = 4

General form

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{pmatrix} * \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Scaling Transform

Expand or contract along each axis (fixed point of origin)

• **Example:** If we scale a point (2,4,6) by scaling factor (0.5,0.5,0.5) Scaled point position = (1, 2, 3)

■Scaled x: 2 x 0.5 = 1

■Scaled y: 4 x 0.5 = 2

•Scaled z: $6 \times 0.5 = 3$

 $(2,4,6) \times 0.5 = (1,2,3)$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.5 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 4 \\ 6 \\ 1 \end{pmatrix}$$

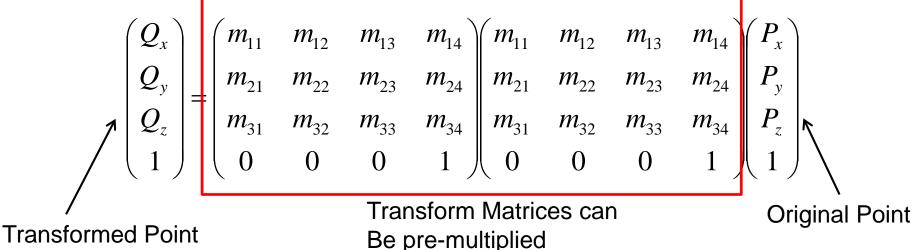
Scale Matrix for Scale(0.5, 0.5, 0.5)

General Form

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Why Matrices?

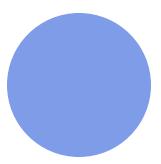
- Sequence of transform matrices can be pre-multiplied
- One final resulting matrix applied (efficient!)
- E.g. transform 1 x transform 2



 Computer graphics card has fast 4x4 matrix multiplier!!!

Why do we need Shading?

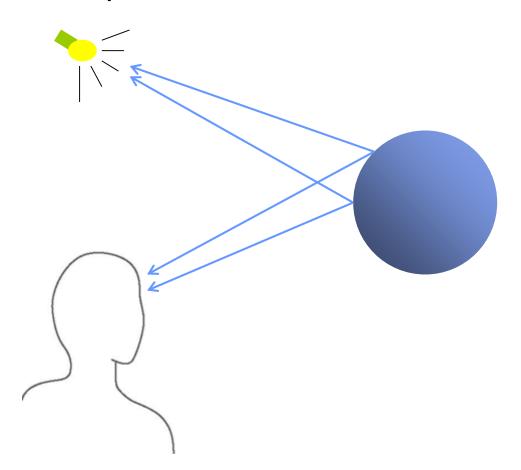
Sphere without lighting & shading:



- Sphere with shading:
 - Has visual cues for humans (shape, light position, viewer position, surface orientation, material properties, etc)

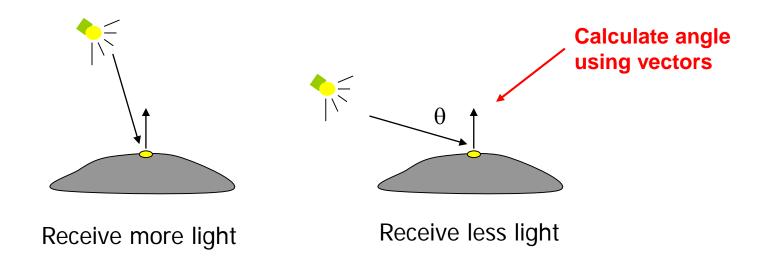
What Causes Shading?

 Shading caused by different angles with light, camera at different points



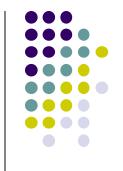
Calculating Shade

- Based on Lambert's Law: $D = I \times k_D \cos(\theta)$
 - Calculate shade based on angle θ



- Represent light direction, surface orientation as vectors
- Calculate θ ? Angle between 2 vectors

Different parts of each object receives different amounts of light



References

- Angel and Shreiner, Interactive Computer Graphics (6th edition), Chapter 1
- Hill and Kelley, Computer Graphics using OpenGL (3rd edition), Chapter 1