General Comprehensive Examination
 Linear Algebra

Print Name: \qquad Sign: \qquad
Submit as many solutions as you can. All solutions will be graded and your final grade will be based on your five best solutions.

Problem 1: Consider $T: P_{3} \rightarrow P_{1}$ defined by second differentiation, i.e., by $T(p)=p^{\prime \prime} \in P_{1}$ for $p \in P_{3}$. Find the matrix representation of T with respect to the bases
$\left\{1+x, 1-x, x+x^{2}, x^{2}-x^{3}\right\}$ for P_{3} and $\{1, x\}$ for P_{1}.
Problem 2: Let A and B be $n \times n$ matrices. If $A B=0$ show that $\operatorname{rank}(A)+$ $\operatorname{rank}(B) \leq n$

Problem 3: Let $T: V \rightarrow V$ be a linear operator on the finite dimensional vector space V. Show that $\operatorname{rank}(T) \geq \operatorname{rank}\left(T^{2}\right)$. Show that if equality holds, then the intersection of $\operatorname{ker}(T)$ and $\operatorname{image}(T)$ is the zero vector.

Problem 4:

(a) Prove that the eigenvalues of a skew-symmetric matrix are either zero or (pure) imaginary.
(b) Let $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ be distinct eigenvalues of a linear operator $T: V \rightarrow V$. Prove that any corresponding set of eigenvectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Problem 5: (Fredholm Alternative). Let A be an $m \times n$ real matrix and $b \in \mathbb{R}^{m}$. Show that exactly one of the following systems has a solution:
(i) $A x=b$
(ii) $A^{T} y=0, \quad y^{T} b \neq 0$

Problem 6: Let $A=\left(\begin{array}{rr}1 & 0 \\ -2 & 2 \\ 0 & 1\end{array}\right)$.
(a) Compute a singular value decomposition of A.
(b) Compute the vector \hat{b} in the column space of A that is closest to $b=$ $(1,1,1)^{T}$,

