GCE: 502, Linear Algebra

May 2020
No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let A, B be two square complex matrices. Let $f_{B}(x)=\operatorname{det}(x I-B)$ denote the characteristic polynomial of B. Prove that the matrix $f_{B}(A)$ is invertible if and only if A and B do not have any eigenvalue in common.

Exercise 2:

Let $T: V \rightarrow V$ be a linear transformation of a finite dimensional vector space.
(i). Prove the following chain of inclusions: $\ldots \subset \operatorname{Range}\left(T^{3}\right) \subset \operatorname{Range}\left(T^{2}\right) \subset \operatorname{Range}(T) \subset V$. (ii). Prove that there exists a positive integer K such that $\operatorname{Range}\left(T^{k}\right)=\operatorname{Range}\left(T^{k-1}\right)$ for all $k>K$.

Exercise 3:

Let V be a finite dimensional real inner product space and $T: V \rightarrow V$ be a self-adjoint isometry. Prove that there exists a subspace $U \subset V$ such that $T(x+y)=x-y$ for all $x \in U$ and y in the orthogonal complement of U.

Exercise 4:

Let T be the transpose operator acting on $n \times n$ matrices.
(i). Show that all eigenvalues of T belong to $\{ \pm 1\}$.
(ii). Describe the eigenspaces of T.
(iii). Show that τ is an orthogonal operator, and hence explain why every matrix has a unique decomposition as the sum of a symmetric and skew-symmetric matrix.

Exercise 5:

Suppose that $x^{\top} M x=\mathbf{0}$ for all vectors $x \in \mathbb{R}^{n}$.
(i). Prove that M is skew symmetric. Does every skew-symmetric matrix satisfy this condition?
(ii). If M is invertible, prove that n is odd.

Exercise 6:
Describe the dimensions n in which there exists an invertible matrix of multiplicative order 5 , that is, a non-identity matrix M which satisfies $M^{5}=I_{n}$. In which dimensions, is there
such a matrix for which 1 is not an eigenvalue?
Hint: Consider the matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

