GCE: 502, Linear Algebra

 January 2020No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Prove that an m by n matrix A has rank at most r if and only if A can be expressed as a sum of r rank one matrices.

Exercise 2:

Let A be a $n \times n$ matrix. Prove that there exists a $n \times n$ matrix B such that $A B=0$ and $\operatorname{rank}(A)+\operatorname{rank}(B)=n$.

Exercise 3:

Show that for any $n \times n$ real matrix $A, \sin A$ and $\cos A$ are well defined through their power series expansion, and prove that $(\cos A)^{2}+(\sin A)^{2}=I$, where I is the n by n identity matrix.

Exercise 4:

(i). Compute $\exp (t A)$ if $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$ and t is in \mathbb{R}.
(ii). Prove that, if $A B=B A$, then $\exp (A) \exp (B)=\exp (A+B)$.
(iii). Prove that, if A is skew-symmetric (i.e., $A^{\top}=-A$) then $\exp (A)$ is an orthogonal matrix.

Exercise 5:

Let A be an invertible n by n matrix. Show that there is a polynomial P with degree less or equal than $n-1$ such that $A^{-1}=P(A)$.

