GCE: 502, Linear Algebra January 2020 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Prove that an m by n matrix A has rank at most r if and only if A can be expressed as a sum of r rank one matrices.

<u>Exercise 2</u>:

Let A be a $n \times n$ matrix. Prove that there exists a $n \times n$ matrix B such that AB = 0 and rank(A) + rank(B) = n.

<u>Exercise 3</u>:

Show that for any $n \times n$ real matrix A, sin A and $\cos A$ are well defined through their power series expansion, and prove that $(\cos A)^2 + (\sin A)^2 = I$, where I is the n by n identity matrix.

Exercise 4:

(i). Compute $\exp(tA)$ if $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ and t is in \mathbb{R} .

(ii). Prove that, if AB = BA, then exp(A) exp(B) = exp(A + B).

(iii). Prove that, if A is skew-symmetric (i.e., $A^{\top} = -A$) then $\exp(A)$ is an orthogonal matrix.

<u>Exercise 5</u>:

Let A be an invertible n by n matrix. Show that there is a polynomial P with degree less or equal than n-1 such that $A^{-1} = P(A)$.