GCE: 503, Analysis and measure theory January 2020
 No documents, no calculators allowed Write your name on each page you turn in

Exercise 1:

Let E be a measurable subset of \mathbb{R} and $f: E \rightarrow \mathbb{R}$ a measurable function. For a in \mathbb{R}, set $\omega_{f}(a)=|\{x \in E: f(x)>a\}|$ where $|\cdot|$ denotes the Lebesgue measure.
(i). If $f_{k}: E \rightarrow \mathbb{R}$ is a sequence of Lebesgue measurable, real-valued functions, such that $f_{k} \leq f_{k+1}$ and $f_{k} \rightarrow f$ almost everywhere, show that $\omega_{f_{k}} \leq \omega_{f_{k+1}}$ and $\omega_{f_{k}} \rightarrow \omega_{f}$.
(ii). Recall that f_{k} converges in measure to f if for all positive ϵ, $\left|\left\{x \in E:\left|f_{k}(x)-f(x)\right|>\epsilon\right\}\right|$ tends to zero as k tends to infinity.
If f_{k} converges in measure to f then show that $\lim \sup \omega_{f_{k}}(a) \leq \omega_{f}(a-\epsilon)$, and
$\liminf _{k \rightarrow \infty} \omega_{f_{k}}(a) \geq \omega_{f}(a+\epsilon)$, for every $\epsilon>0$.
(iii). If f_{k} converges in measure to f, show that $\omega_{f_{k}}(a) \rightarrow \omega_{f}(a)$ if ω_{f} is continuous at a.

Exercise 2:

(i). Define the sequence of functions $g_{n}:[0,1] \rightarrow \mathbb{R}, g_{n}(x)=n x^{n}$. Show that g_{n} converges almost everywhere to zero. Is there a function h in $L^{1}([0,1])$ such that $\left|g_{n}(x)\right| \leq h(x)$ for almost all x in $[0,1]$?
(ii). If f is in $L^{\infty}([0,1])$ and f is continuous at 1 , show that $\int_{0}^{1} n x^{n} f(x) d x$ converges to $f(1)$. Hint: set $x^{n+1}=y$.
(iii). If we only assume that f is in $L^{1}([0,1])$ and f is continuous at 1 , does $\int_{0}^{1} n x^{n} f(x) d x$ converges to $f(1)$?

Exercise 3:

Let X be a metric space and A and B two subsets of X such that $A \cap B=\emptyset$ and $A \cup B=X$. Show that the following statements are equivalent:

- Any function $f: X \rightarrow \mathbb{R}$ is continuous if and only if the restriction of f to A and the restriction of f to B are continuous.
- A and B are both open and closed in X.

