Name:_____

January, 2021

1:

Suppose that S is a subset of \mathbb{R} . Let F be the intersection of all closed sets that contain S. Show that F is the set of all limits of sequences of points in S that converge in \mathbb{R} . For the definition of closed, use only that a set is closed if and only if its complement is open.

2:

Lef f be a continuous and bounded real valued function on \mathbb{R} . Show that

$$||f||_{\infty} = \sup\{|f(x)| : x \in \mathbb{R}\}.$$

3:

Let (K, ρ) be a compact metric space and $f: K \to K$ be such that

$$\exists C \in (0,1), \quad \forall x, y \in K, \quad \rho(f(x), f(y)) \le C\rho(x, y).$$

(i). Let x_1 be in K and set $x_{n+1} = f(x_n)$, for $n \ge 1$. Show that x_n is a Cauchy sequence.

(ii). Show that x_n converges to some l in K satisfying l = f(l). # 4:

Suppose $\{f_n\}$ is a bounded sequence in $L^1(\mathbb{R})$ and $f_n \to f$ a.e. Suppose also that $\forall M > 0, \exists n \in \mathbb{N}$ such that

$$\int_{\mathbb{R}\setminus[-M,M]} |f_n| > 1.$$

Show that $||f_n||_1 \not\rightarrow ||f||_1$.