WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics - I
 January, 2020

Note: The problems are arbitrarily ordered, not necessarily according to difficulty. Please show a clear logic of your solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. (20 points) Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ and variance σ^{2}.
(a) (10 points) Find the approximate distribution of $1 / \bar{X}$ For a large sample. Is this valid for all values of μ ?
(b) (10 points) Show that $1 / \bar{X}$ bias for $1 / \mu$ but asymptotically unbiased.
2. (20 points) Assume existence
(a) (8 points) State the rule of using the moment generation function (MGF) $M_{X}(t)$ to get any moment of X.
(b) (12 points) Proof the above rule.
3. (20 points) Suppose that X and Z are independent normal random variables with mean 0 and variances σ_{X}^{2} and σ_{Z}^{2}, respectively, i.e., $X \sim N\left(0, \sigma_{X}^{2}\right)$ and $Z \sim N\left(0, \sigma_{Z}^{2}\right)$. Let $Y=\beta_{0}+\beta_{1} X+Z$ where β_{0} and β_{1} are some constants.
(a) (6 points) Let μ_{Y} and σ_{Y}^{2} be the mean and variance of Y, and $\sigma_{X Y}$ be the covariance between X and Y. Express β_{0}, β_{1}, and σ_{Z}^{2} in terms of $\mu_{Y} \sigma_{Y}^{2}, \sigma_{X}^{2}$, and $\sigma_{X Y}$.
(b) (14 points) Suppose that X_{1}, \ldots, X_{n} is a sequence of independent and identically distributed (iid) Normal random variables with mean 0 and variance σ_{X}^{2}, denoted by $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(0, \sigma_{X}^{2}\right)$, and that $Z_{1}, \ldots, Z_{n} \stackrel{i i d}{\sim} N\left(0, \sigma_{Z}^{2}\right)$ and Z_{j} is independent of X_{k} for any j and k. Let $Y_{j}=\beta_{0}+\beta_{1} X_{j}+Z_{j}, j=1, \ldots, n$. Define

$$
b_{1, n}=\frac{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)\left(Y_{j}-\bar{Y}\right)}{\sum_{j=1}^{n}\left(X_{j}-\bar{X}\right)^{2}}
$$

where $\bar{X}=n^{-1} \sum_{j=1}^{n} X_{j}$ and $\bar{Y}=n^{-1} \sum_{j=1}^{n} Y_{j}$.
(a) Prove that $b_{1, n}$ converges to β_{1} in probability, as $n \rightarrow \infty$.
(b) Find the conditional distribution of $b_{1, n}$ given $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$.
4. (20 points) Suppose X and Y are i.i.d. standard normal random variables. Let $Z=$ $\min (X, Y)$. Show that $Z^{2} \sim \chi_{1}^{2}$.
5. (20 points) Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} f(x)$. Let $Y_{i}=X_{(i)}$ denote the $i^{\text {th }}$ order statistic, $i=$ $1, \ldots, n$. Starting with the joint pdf of Y_{1}, \ldots, Y_{n}, derive the marginal pdf of $Y_{r}, r=$ $1, \ldots, n$. [Hint: The joint pdf of Y_{1}, \ldots, Y_{n} is $f\left(y_{1}, \ldots, y_{n}\right)=n!\prod_{i=1}^{n} f\left(y_{i}\right),-\infty<y_{1}<$ $, \ldots,<y_{n}<\infty$.] If $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Beta}(2,1)$, deduce the pdf of $Y_{r}, r=1, \ldots, n$. Is Y_{r} a beta random variable?
6. (20 points) Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$ have the joint pmf,

$$
f\left(y_{1}, \ldots, y_{n}\right)=\frac{\beta^{\alpha} \Gamma(a+\alpha)}{b \Gamma(\alpha)(n+\beta)^{a+\alpha}}, y_{i}=0,1,2, \ldots, \infty
$$

where $a=\sum_{i=1}^{n} y_{i}$ and $b=\prod_{i=1}^{n} y_{i}!$. Find $\operatorname{Cor}\left(Y_{i}, Y_{j}\right), i, j=1, \ldots, n[$ Hint: Find Z such that for $i=1, \ldots, n, Y_{i} \mid Z$ are independent and identically distributed.]

