WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics - I January, 2020

Note: The problems are arbitrarily ordered, not necessarily according to difficulty. Please show a clear logic of your solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

- 1. (20 points) Let X_1, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 .
 - (a) (10 points) Find the approximate distribution of $1/\bar{X}$ For a large sample. Is this valid for all values of μ ?
 - (b) (10 points) Show that $1/\overline{X}$ bias for $1/\mu$ but asymptotically unbiased.
- 2. (20 points) Assume existence
 - (a) (8 points) State the rule of using the moment generation function (MGF) $M_X(t)$ to get any moment of X.
 - (b) (12 points) Proof the above rule.
- 3. (20 points) Suppose that X and Z are independent normal random variables with mean 0 and variances σ_X^2 and σ_Z^2 , respectively, i.e., $X \sim N(0, \sigma_X^2)$ and $Z \sim N(0, \sigma_Z^2)$. Let $Y = \beta_0 + \beta_1 X + Z$ where β_0 and β_1 are some constants.
 - (a) (6 points) Let μ_Y and σ_Y^2 be the mean and variance of Y, and σ_{XY} be the covariance between X and Y. Express β_0 , β_1 , and σ_Z^2 in terms of $\mu_Y \sigma_Y^2$, σ_X^2 , and σ_{XY} .
 - (b) (14 points) Suppose that X_1, \ldots, X_n is a sequence of independent and identically distributed (iid) Normal random variables with mean 0 and variance σ_X^2 , denoted by $X_1, \ldots, X_n \stackrel{iid}{\sim} N(0, \sigma_X^2)$, and that $Z_1, \ldots, Z_n \stackrel{iid}{\sim} N(0, \sigma_Z^2)$ and Z_j is independent of X_k for any j and k. Let $Y_j = \beta_0 + \beta_1 X_j + Z_j$, $j = 1, \ldots, n$. Define

$$b_{1,n} = \frac{\sum_{j=1}^{n} (X_j - \bar{X})(Y_j - \bar{Y})}{\sum_{j=1}^{n} (X_j - \bar{X})^2},$$

where $\bar{X} = n^{-1} \sum_{j=1}^{n} X_j$ and $\bar{Y} = n^{-1} \sum_{j=1}^{n} Y_j$.

- (a) Prove that $b_{1,n}$ converges to β_1 in probability, as $n \to \infty$.
- (b) Find the conditional distribution of $b_{1,n}$ given $X_1 = x_1, \ldots, X_n = x_n$.
- 4. (20 points) Suppose X and Y are i.i.d. standard normal random variables. Let $Z = \min(X, Y)$. Show that $Z^2 \sim \chi_1^2$.
- 5. (20 points) Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x)$. Let $Y_i = X_{(i)}$ denote the i^{th} order statistic, $i = 1, \ldots, n$. Starting with the joint pdf of Y_1, \ldots, Y_n , derive the marginal pdf of $Y_r, r = 1, \ldots, n$. [Hint: The joint pdf of Y_1, \ldots, Y_n is $f(y_1, \ldots, y_n) = n! \prod_{i=1}^n f(y_i), -\infty < y_1 < \ldots, < y_n < \infty$.] If $X_1, \ldots, X_n \stackrel{iid}{\sim}$ Beta(2, 1), deduce the pdf of $Y_r, r = 1, \ldots, n$. Is Y_r a beta random variable?

6. (20 points) Let $Y = (Y_1, \ldots, Y_n)$ have the joint pmf,

$$f(y_1, \dots, y_n) = \frac{\beta^{\alpha} \Gamma(a + \alpha)}{b \Gamma(\alpha)(n + \beta)^{a + \alpha}}, y_i = 0, 1, 2, \dots, \infty,$$

where $a = \sum_{i=1}^{n} y_i$ and $b = \prod_{i=1}^{n} y_i$!. Find $\operatorname{Cor}(Y_i, Y_j), i, j = 1, \dots, n$ [Hint: Find Z such that for $i = 1, \dots, n, Y_i \mid Z$ are independent and identically distributed.]