WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics - I August, 2018

Note: Please make sure to write down your thinking process in bullet points even if you cannot solve the problems perfectly.

1. Let

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{1}{2}\left(x^{2}-2 \rho x y+y^{2}\right)\right\},-\infty<x, y<\infty
$$

Find $f(y \mid x>0)$. Deduce $f(y \mid x<0)$.
2. Let $X, Y \stackrel{i i d}{\sim}$ Uniform $(0,1)$. Find $f(x, y)$ subject to $x<y$. Compute the $\operatorname{cor}(X, Y)$ subject to $X<Y$. What happens if instead $y<x$?
3. Let X_{1}, \ldots, X_{n} be independent and identically distributed with finite variance, and let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Assume that $f(x)=2 \Phi(x) \phi(x),-\infty<x<\infty$, where $\phi(\cdot)$ and $\Phi(\cdot)$ are respectively the pdf and cdf of the standard normal random variable. Find T and the sequences μ_{n} and σ_{n} such that

$$
\frac{\bar{X}_{n}-\mu_{n}}{\sigma_{n}} \xrightarrow{d} T .
$$

4. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a random sample from a Poisson distribution with mean θ. We are interested in estimating $g(\theta)=P\left(X_{1}=0\right)=e^{-\theta}$. Consider the following two estimators:

$$
T_{n, 1}=e^{-\bar{X}_{n}} \quad \text { and } \quad T_{n, 2}=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}=0\right),
$$

where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, and I is an indicator function.
(a) Find the asymptotic distribution of $T_{n, 1}$.
(b) Find the asymptotic distribution of $T_{n, 2}$.
(c) Which estimator is more efficient in estimating $g(\theta)$ when a large sample size is available? Show your argument.
5. Let P_{1}, \ldots, P_{n} be n i.i.d. Uniform $(0,1)$ random variables, and $P_{(1)} \leq P_{(2)} \leq \ldots \leq P_{(n)}$ are their order statistics. For a given $k \in\{1,2, \ldots, n\}$, define

$$
W_{k}=\prod_{i=1}^{k} P_{(i)} .
$$

Find the CDF of W_{k}.
(a) Define $U_{i}=\frac{P_{(i)}}{P_{(i+1)}}, i=1, \ldots, k-1$. Show that $P_{(i)} \sim \operatorname{beta}(i, n-i+1)$ and $U_{i}^{i} \sim \operatorname{Uniform}(0,1)$.
(b) Show that the random variables $U_{1}, U_{2}^{2}, \ldots, U_{k-1}^{k-1}$, and $P_{(k)}^{k}$ are all independent to each other.
(c) Get the formula for $P\left(W_{k} \leq w\right)$, where $w \in(0,1)$ is a constant.
6. Let $T=X+Y$, where X and Y are independent random variables.
(a) Suppose $X \sim \operatorname{Gamma}(\alpha, \beta)$ and $T \sim \operatorname{Gamma}(\nu, \beta)$ with $\nu>\alpha$. Find the distribution of Y. Explain.
(b) Suppose $T \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ and $X \sim \operatorname{Normal}\left(\theta, \delta^{2}\right)$. What condition is necessary for Y to have a normal distribution? Explain.
(c) Give an example that shows T is independent of $X-Y$.

