WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics II January, 2021

Note: Please show a clear logic of each solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. Let the pdf of a logistic location distribution be

$$f(x|\theta) = \frac{e^{(x-\theta)}}{(1+e^{(x-\theta)})^2} , -\infty < x < \infty, -\infty < \theta < \infty$$

- (a) (10 points) Does this distribution family have a monotone likelihood ratio (MLR)?
 (b) (10 points) Find the uniformly most powerful (UMP) size α test for the hypotheses H₀: θ = 0 vs. H₁: θ = 1 based on an observation.
- 2. (20 points) Let $X_1, ..., X_n$ be iid Poisson (λ) , and λ has a prior distribution gamma (α, β) . Assume that α and β are known constants. What is the Bayes estimator of λ ?
- 3. (20 points) Let X_i be i.i.d. Bernoulli(p), i = 1, 2, ...n. We know $\bar{X}_n(1 \bar{X}_n)$ is the MLE of the variance of X_i . How is $\bar{X}_n(1 \bar{X}_n)$ distributed asymptotically as $n \to \infty$?
- 4. (20 points) Suppose X_1, X_2, \dots, X_n are *iid* Bernoulli(p) where $n \ge 2$ and 0 is the unknown parameter.

a) Derive the uniformly minimum variance unbiased estimator (UMVUE) of $\tau(p)$, where $\tau(p) = e^2(p(1-p))$.

b) Find the Cramer-Rao lower bound (CRLB) for estimating $\tau(p) = e^2(p(1-p))$.

5. (20 points) Let X_1, \dots, X_n be iid with common density

$$f(x|\theta,\lambda) = \lambda e^{-\lambda(x-\theta)}, \quad x \ge \theta,$$

where $\theta > 0$ and $\lambda > 0$ are two parameters.

- 1. Find a maximum likelihood estimator for (θ, λ) based on the sample (X_1, \ldots, X_n) .
- 2. Let $X_{(1)} = \min_{i=1,...,n} X_i$. Assume that $\lambda = 1$ and θ is unknown. Consider a class of confidence intervals for θ that have the form $(X_{(1)} c_1, X_{(1)} c_2)$ where $0 \le c_2 < c_1$ are two constants. For fixed confidence level 1α , find c_1 and c_2 such that the confidence interval length $c_1 c_2$ is minimized.

6. (20 points) Let X, Y be two binary variables with

$$P(X = r, Y = s) = \pi_{rs}, \quad r, s \in \{0, 1\}.$$

- a. Find $\rho = \operatorname{Corr}(X, Y)$.
- b. For a sample of size n, we observe counts N_{rs} , where $r, s \in \{0, 1\}$. Find the maximum likelihood estimator of ρ .