WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics - II August, 2018

Note: Please make sure to write down your thinking process in bullet points even if you cannot solve the problems perfectly.

- 1. Let $X_1, \ldots, X_n \mid \beta \stackrel{iid}{\sim} \text{Gamma}(\alpha, \beta)$, where α is assumed known. Let $R = S/\bar{X}$, where \bar{X} and S are respectively the sample mean and sample standard deviation. What parameter does R estimate? Is R an unbiased estimator? Argue that R is stochastically independent of \bar{X} . Find $E(R^2)$ and give an approximation to E(R). [For $X \sim \text{Gamma}(a, b), E(X) = a/b, \text{Var}(X) = a/b^2$.]
- 2. Let $X_1, \ldots, X_n \mid \theta$ be independent and identically distributed with

$$f(x \mid \theta) = \frac{2x}{\theta^2}, 0 < x < \theta.$$

Find the MLE, $\hat{\theta}$, of θ and its asymptotic distribution (as *n* goes to infinity). What optimality property does $\hat{\theta}$ have?

- 3. A forest has N (unknown) monkeys. A random sample of n monkeys is selected from the forest, tagged and released back into the forest. After a few days, a random sample of m monkeys is selected and Y monkeys are found with the tags. Find an estimator of N. Approximate the mean and variance of your estimator. In this experiment, with n = 25 and m = 16, Y was observed to be 8. Find an approximate 95% confidence interval for N.
- 4. Let Y_1, \ldots, Y_n be iid from a one parameter exponential family with pdf or pmf $f(y|\theta)$ with complete sufficient statistic $T(Y) = \sum_{i=1}^{n} t(Y_i)$ where $t(Y_i) \sim \theta X$ and X has a known distribution with known E(X) and known variance V(X). Let $W_n = cT(Y)$ be an estimator of θ where c is a constant.
 - (a) Find the mean square error (MSE) of W_n as a function of c (and of n, E(X) and V(X)).
 - (b) Find the value of c that minimizes the MSE. Prove that your value is the minimizer.
 - (c) Find the uniformly minimum variance unbiased estimator (UMVUE) of θ .
- 5. Let X_1, \ldots, X_n be a random sample from a Poisson distribution with mean θ .
 - (a) Show that $T = \sum_{i=1}^{n} X_i$ is complete sufficient statistic for θ .
 - (b) For a > 0, find the uniformly minimum variance unbiased estimator (UMVUE) of $g(\theta) = e^{a\theta}$.

(c) Prove the identity:

$$E\left[2^{X_1}|T\right] = \left(1 + \frac{1}{n}\right)^T.$$

- 6. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \text{Gamma}(1, \theta)$ and independently $Y_1, \ldots, Y_m \stackrel{iid}{\sim} \text{Gamma}(1, \mu)$. Consider testing $H_o: \theta = \mu$ versus $H_1: \theta \neq \mu$.
 - (a) Find the likelihood ratio test (LRT).
 - (b) Let $T = \frac{n\bar{X}}{n\bar{X}+m\bar{Y}}$. Show that the LRT can be based on T.
 - (c) Find the distribution of T when H_o is true.