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Math Modeling

Why Model??

 To understand, To predict, To control

Models provide a conceptual framework
Synthesize/summarize large quantities of data
Provide insight and test hypotheses

Agent Based Models: easy to understand
implement

Mathematics — provides a precise language with
well defined rules (variables, parameters,...)



Agent Based Models

e Also known as:

— Cellular Automaton

— (Biased) Random Walks
e Basic idea: Rule based s nsoiomomatcsuispacessuecungenseaseastroceing

e “Agents” have different states and rules
govern whether they change states and/or
move, rules for interactions of agents.

* Interesting emergent phenomena and
interactions can occur!
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Agent Based Models - Applications
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Intuitive Power of Agent-Based Models
Biomedical applications of ABMs are taking off.
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Agent Based Models - Applications
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Agent Based Models

e Why are they so popular?
— Complex systems are handled easily
— Autonomous Agents (not centrally governed)
— Diverse and Heterogeneous Agents
— Agents can adapt

* Complex social processes and a system can be
built from the bottom up

e Can be analyzed mathematically



Agent Based Models

e Computational Power

e CPU: just a few cores with huge cache memory that
can handle a few threads (or processes) at a time

e GPU: hundred of cores that can handle thousands of

threads (or processes) simultaneously
CPU versus GPU

Graphical
. . GeForce GTX TITAN
prOCGSSlng unit ' Table 2: Time to Generate Approximations
. Without GPU, With GPU) sec
—> the brains (
GPU 1e6 le7
1'1—5 (0.187122, 0.010357) | (1.722311, 0.048325)
Central sl (0.316912, 0.013135) | (3.170940, 0.082713)
: : — (0.472206, 0.016734) | (4.725572, 0.117412)
processing unit Exrems Edton n—zu (0.644042, 0.020177) | (6.274727, 0.151933)
—> the brains

CPU

https://www.overclock3d.net/reviews/gpu_displays/gainward_gtx_titan/2
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Models — movement

e Off-Lattice
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1-d, 2-d, 3-d?
 Rules for movement?

Randomness?
 Probability / expected value

* Vectors
— Position: X=<x(t),y(t)>
— Movement: X, .,,=X,4+tV

where V is the velocity, )

which depends on?
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Movement

e Distributions

e Poisson, von Mises, wrapped normal, wrapped
Cauchy, circular distributions, normal, ...

 Biased motion

* Bias time, location, angle, movement

e Environmental conditions |

. . o g

e Crowding, fluid flow,
chemicals, food, ....




Agent Based Models

e What goes into an agent based model?

| Environment l

‘ Prototyping ‘

\ A

‘ Model Architectural Design

Agent i} ‘
e Attributes Agent and Agent Rule Design
N aiaten” N emsiaten e Behavioral rules </|_, ‘
o \ \\M“"’*é/m\ | |+ Memory .
v fostacon Mm“ng . ) « Resources ‘ ’ Agent Environment Design ‘
- Cstmaton, Catbratin / ¢ Decision making sophistlcatjon O *
Empirical ™[ Model * Rules to modlify behavioral rules
domain : domain Implementation ‘
Model Evaluation |

Empirical Validation

http://jasss.soc.surrey.ac.uk/13/1/3.html

\ A

Verification and Validation ‘

https://www.smartcaptoolbox.com/?page_id=36

https://www.fhwa.dot.gov/advancedresearch/pubs/11036/index.cfm
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Agent Based Models

e Back to the basics...

e Cellular Automaton
— On agrid
— Discrete set of time steps
— Agents fixed at each grid point
— Iterate through time



John Conway’s Game of Life

e Developedin 1970

e Zero-player game: determined by initial
conditions and rules of the “agents”
determine the evolution

e Agents are on a 2-d grid in one of two states:

— Alive or Dead

— Moore neighborhood to determine
state changes
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Rules for Game of Life

1. Any live cell with fewer than two live neighbours dies, as if
caused by under-population.

2. Any live cell with two or three live neighbours lives on to
the next generation.

3. Any live cell with more than three live neighbours dies, as
If by over-population.

4. Any dead cell with exactly three live neighbours becomes
a live cell, as if by reproduction.
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Game of Life

* Statespace: ¥ = {0, 1} where O=dead, 1=alive
e No movement of agents
e At t=0, initialize every point on a 2-d grid withaOor 1

* Transition rule for state changes at each time
iteration:

-ifsfj=l

® t;j

(t+1) |1 either 2 or 3 neighbors = 1
0 otherwise

=0
j

o if 9:

(t+1) {l exactly 3 neighbors = 1
Sij =

(0 otherwise
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Patterns in Game of Life

Still lifes
Oscillators
Spaceships
Wikipedia

Simple rules can lead to:
— Interesting math to formalize and analyze
— Fun patterns!


https://en.wikipedia.org/wiki/Conway's_Game_of_Life#Examples_of_patterns

Abelian Sandpile

e 2-d Cellular Automaton

 Begin with a certain number of
grains of sands at the origin at

https://commons .wikimedia.org/wiki/File:Von_neumann _neighborhood _with_cardinal_directions.svg

time zero o

e At each lattice point:

— If # of grains >3 then distribute
one grain to each of four
neighbors

— Stop at steady state
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1-d Agent Based Model

e Starting simple: a single agent in a single state that
moves on a 1-d grid or line.

e At each iteration, the agent flips a coin. Move left 1
box if T and move right 1 box if H

First flip H

e /H\/ H\/T\ /H\/ T\/T\

A A N N VA A N ANERAN

i ip H T H T H T H T H T H T H T H T
s O O B B B

Lands on 5 3 3 3 1 -1 3 1 1 -1 1 -1 -1 -3

1
ttps://en.wikipedia.org/wiki/Random_walk

0 =



1-d Agent Based Model

Code
Expected Value and Law of Large Numbers

Gambler’s ruin or Gambler’s fallacy
Random Process with independent trials
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2-d Agent Based Model

* Ona 2-d grid
 \Von Neumann neighborhood
e Code
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Cell Proliferation

e Cellsin an experiment can reproduce and

move

 Move freely, confined to stay within the

domain

e Code
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Cells Absorbing Particles







Spread of an epidemic

e.g. Flu or Ebola virus

Start with healthy population and introduce
one sick person into the population

Probability: of getting sick, recovering, dying

Rules: Get sick if come into contact with other
sick individuals



® Susceptible

SIR Model

® Infected @ Recovered

7/16/18
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SIR Model

For sf = &:
7, :ifx} € B5r and K < X,
f(sh) = where X ~ Uniform[0, 1
S :otherwise

o o1 oz ©a 04 05 06 07 03

Forsl =7;,3j=1,2,..Tr:

f(st): Ij+1 . 1f1§j<TI
ok R, :ifj =Ty
For st =R,,,3m =1,2,...,Tg:

Cifl <
f(gi): Rm+1 1f1_m<TR

S cifm="Tg

T~=total infection time, T =total recovery time, K=contact tolerance
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Analyzing Steady States

N: 10000, pg: 0.02, K: 0.60, Ty: 30, Tg: 30 N: 10000, py: 0.04, K: 0.60, Ty: 30, Tg: 30
8000 0
» U € L be a state f\
» U;: the number of cells in state U at iteration t 2 oy
] &]
S 4000 i)

» By the U transition neighborhood
» W(v — U): probability cell v transitions to state Y ==

1000
0
0 50 100 150 8
Iteration Iteration
E = E P(v,
(Ut+1) ( t+1 e u) N: 10000, pg: 0.08, K: 0.60, Ty 30, Tx: 30 . N: 10000, py: 0.16, K: 0.60, Ty: 30, Tg: 30
VEX 2000 9000
=Y Y Pu cU) -
6000
Ver veV a I ,
5] 3° =t
=Y ) Pl € B)W(ve »U) T -
st —r—]
Vexr veV 20 Y
1000 M ¥ _:;‘a.-a
o
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For our rules in the CA model, we get:

I
3 _ (N L
Ty = (NI —R)d1—[1- W) }It — AL, R,
K (Bgz)
Ro=—i+d1i- LR =6, Ry
t+1 — TI t TR T —- ty 4l
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SIR Models

e Alternate approaches to SIR Models

e Differential equations — could analyze steady
states...

s SI
dt N

I SI
o AT
dt Sy
IR
AT

i !

N = S+I1+R



Analysis and Comparison to Other Models

e Can be used to understand collective motion

 For what rules do we observe dynamic
patterns? Wave propagation?

e Why use these models?

AB or CA Models

Pros

Cons

Local solution

Decrease step size increases time
complexity, not memory

Very easy to code (even with
strange geometries)

Relatively easy to couple with
other equations

Needs to run sufficiently many
times

Expensive to find global solution

Difficult to analyze parameter ef-
fects

PDE Models

Pros k
Many established solution meth-
ods

Closed form solution with simple
geometries

Easier to find: MFPT over entire

region, Parameter Sensitivity, Pa-
rameter Estimation

Rigorously formulate applications

| Cons

Analytic solution difficult with |
strange geometries, B.C.

Numerical Scheme solves full solu-
tion (expensive with memory)

Difficult to make numerical
scheme  stable/accurate  with
strange geometries or BCs

Very difficult to couple with other
equations




Collective Motion

e Deriving a Global Recurrence

Rule and analyzing stability
allows us to determine behavior

in a stochastic system of agents

e Other analysis...
— How long does it reach an agent

or a group of agents to reach a
given location?

— Application of MFPT — Mean
First Passage Time






7/16/18

Mean First Passage Time in 1D

Line from 0 to 1 and divide the line into N segments 0, §, 24, ..., N

At each iteration x has probability £(x) moving left and r(x) moving
right
Note that Vx € [0, 1], 4(x) + r(x) = 1.

We then have a distribution of random variables X denoting
locations of x at iteration k.

T(x): mean time for x to escape through the boundary x = 0 or
x=1.

T. iteration size (i.e. time step)

T(x) =E{t: Xy = x}
=E{t: X1 =x—-6,Xo=x}+E{t: Xy =x+6 Xy = x}

S. Olson (WPI)
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MFPT 1D

If probability to move

Let Y) be the random variables defined by Y, = X;.1. Note: left and right is % and
° Ty(y)=T(x)—r. i =
@ Distribution of {X,} is same as { Y} escaping through x=0
and x=1:
TxX)=E{t:Yo=x—-6}+E{t: Yo=x+0}+T
=L(x)T(x—68)+r(x)T(x+68)+7 {}2{’ =T"(x) :x€(0,1)
If we assume § < 1 we can expand T(x —§) and T(x + d) by Taylor T(x)=0 :x €{0,1}

Series expansions.
2
T(x) =7 +£0)(T(x) =6 T'(x) + ‘% T'(x))

+ r(x) ( T(x)+6T'(x)+ % T”(x)) + O(6%)

1 = (r(x) = 209 )T (x) + (r(x) + £(2)) 62—2 T"(x)
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Escape Time or MFPT on Unit Disk

Fig. 5.3: Simulation of random walk on disk after 10, 100, 1000 iterations for MFPT estimation

Circle Random Walk - x0 (.95,0) " Circle Random Walk - x0 (.9,0)
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Summary

 Agent Based Models
— Useful!
— Involves probability, statistics, vectors, ...
— Could lead to interesting math analysis
— Computationally intensive!
— Model development and rules depends on application

* Free coding platforms
— Python and Octave
— NetlLogo



https://ccl.northwestern.edu/netlogo/
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