WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics-II
 January, 2018

Note: Please make sure to write down your thinking process in bullet points even if you cannot solve the problems perfectly.

1. Let $Y_{1}, \ldots, Y_{n} \mid p \stackrel{i i d}{\sim} \operatorname{Bernoulli}(p), p \sim \operatorname{Beta}(\alpha, \beta)$. Let \hat{p} denote the Bayes estimator of p under squared error loss and let $M(p)$ denote the mean squared error of \hat{p}. Show that $M(p)$ is bounded in p provided $\alpha=\beta=\frac{1}{2} \sqrt{n}$. Give the bounded mean squared error.
2. A random sample of n adults is taken from a large population to estimate the proportion, π, of adults responding 'yes' to item, A, and each adult is asked to respond truthfully. A known proportion $0<\gamma<1$ of the adults answers A only, and the remaining proportion $1-\gamma$ does the following. Each respondent is asked to toss a biased coin (probability of heads is p, known). If the coin comes up heads, the respondent is asked to answer A; if it comes up tails, the respondent is asked to answer the opposite of A. Suppose there are y 'yeses' among the n adults. Find the maximum likelihood estimator of π and its standard error. Briefly discuss the quality of the maximum likelihood estimator.
3. Let $X_{1}, \ldots, X_{n} \mid \theta \stackrel{i i d}{\sim} \operatorname{Uniform}(0, \theta)$ and let $X_{(1)}=\min \left(X_{1}, \ldots, X_{n}\right)$ and $X_{(n)}=\max \left(X_{1}, \ldots, X_{n}\right)$. Find $f\left(x_{(1)} \mid x_{(n)}\right)$. Are you surprised with your answer? Next, find $E\left(X_{(1)}\right)$ and $E\left(X_{(1)} \mid\right.$ $\left.X_{(n)}\right)$. Deduce the important optimality result.
4. Let Y_{1}, \cdots, Y_{n} be independent samples from the distribution with pdf containing the unknown parameter $\theta>0$:

$$
f_{\theta}(y):= \begin{cases}\frac{1}{\theta} y^{\frac{1}{\theta}-1} & \text { if } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the method of moments estimator for θ using the Y_{i}.
(b) Determine the maximum likelihood estimator for θ using the Y_{i}.
(c) Ideally, estimator with a smaller variation should be better. Derive the asymptotic variances for the above two estimators.
5. Assume a random sample $\boldsymbol{X}=\left(X_{1}, \ldots, X_{n}\right)$ is drawn from a population given by a pdf $f(\cdot ; \theta), \theta \in \Theta$. Assume that for each such sample the likelihood function is maximized by exactly one point in Θ. Prove that a likelihood estimator $\hat{\theta}$ is always invariant to changes in the labels of X_{1}, \ldots, X_{n}.
6. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent and identically distributed (iid) random variables with probability density function

$$
f(x)=\frac{2}{\sqrt{2 \pi} \lambda} e^{x} \exp \left(\frac{-\left(e^{x}-1\right)^{2}}{2 \lambda^{2}}\right)
$$

where $x>0$ and $\lambda>0$.
(a) What is the UMP (uniformly most powerful) level α test for $H_{0}: \lambda=1$ vs. $H_{1}: \lambda=2$?
(b) If possible, find the UMP level α test for $H_{0}: \lambda=1$ vs. $H_{1}: \lambda>1$.

