WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics-II January, 2018

Note: Please make sure to write down your thinking process in bullet points even if you cannot solve the problems perfectly.

- 1. Let $Y_1, \ldots, Y_n \mid p \stackrel{iid}{\sim} \text{Bernoulli}(p), p \sim \text{Beta}(\alpha, \beta)$. Let \hat{p} denote the Bayes estimator of p under squared error loss and let M(p) denote the mean squared error of \hat{p} . Show that M(p) is bounded in p provided $\alpha = \beta = \frac{1}{2}\sqrt{n}$. Give the bounded mean squared error.
- 2. A random sample of n adults is taken from a large population to estimate the proportion, π , of adults responding 'yes' to item, A, and each adult is asked to respond truthfully. A known proportion $0 < \gamma < 1$ of the adults answers A only, and the remaining proportion $1 - \gamma$ does the following. Each respondent is asked to toss a biased coin (probability of heads is p, known). If the coin comes up heads, the respondent is asked to answer A; if it comes up tails, the respondent is asked to answer the opposite of A. Suppose there are y 'yeses' among the n adults. Find the maximum likelihood estimator of π and its standard error. Briefly discuss the quality of the maximum likelihood estimator.
- 3. Let $X_1, \ldots, X_n \mid \theta \stackrel{iid}{\sim} \text{Uniform}(0, \theta)$ and let $X_{(1)} = \min(X_1, \ldots, X_n)$ and $X_{(n)} = \max(X_1, \ldots, X_n)$. Find $f(x_{(1)} \mid x_{(n)})$. Are you surprised with your answer? Next, find $E(X_{(1)})$ and $E(X_{(1)} \mid X_{(n)})$. Deduce the important optimality result.
- 4. Let Y_1, \dots, Y_n be independent samples from the distribution with pdf containing the unknown parameter $\theta > 0$:

$$f_{\theta}(y) := \begin{cases} \frac{1}{\theta} y^{\frac{1}{\theta} - 1} & \text{if } 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

- (a) Determine the method of moments estimator for θ using the Y_i .
- (b) Determine the maximum likelihood estimator for θ using the Y_i .
- (c) Ideally, estimator with a smaller variation should be better. Derive the asymptotic variances for the above two estimators.
- 5. Assume a random sample $\mathbf{X} = (X_1, \ldots, X_n)$ is drawn from a population given by a pdf $f(\cdot; \theta), \ \theta \in \Theta$. Assume that for each such sample the likelihood function is maximized by exactly one point in Θ . Prove that a likelihood estimator $\hat{\theta}$ is always invariant to changes in the labels of X_1, \ldots, X_n .

6. Let X_1, X_2, \dots, X_n be independent and identically distributed (iid) random variables with probability density function

$$f(x) = \frac{2}{\sqrt{2\pi\lambda}} e^x e^x e^x p\left(\frac{-(e^x - 1)^2}{2\lambda^2}\right),$$

where x > 0 and $\lambda > 0$.

- (a) What is the UMP (uniformly most powerful) level α test for H_0 : $\lambda = 1$ vs. H_1 : $\lambda = 2$?
- (b) If possible, find the UMP level α test for H_0 : $\lambda = 1$ vs. H_1 : $\lambda > 1$.