1999-2000 Academic Year

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 11-12</td>
<td>Enrollment for Term C and Course Changes</td>
</tr>
<tr>
<td>January 12</td>
<td>Deadline for Completion of Degree Requirement Forms for February 2000 Candidates</td>
</tr>
<tr>
<td>January 13</td>
<td>First Day of Classes, Term C</td>
</tr>
<tr>
<td>January 13-14</td>
<td>Additional Course Changes As Necessary</td>
</tr>
<tr>
<td>January 17</td>
<td>First Day of Classes for Graduate Courses</td>
</tr>
<tr>
<td>February 17</td>
<td>Advising Appointment Day (No Classes)</td>
</tr>
<tr>
<td>March 2</td>
<td>Last Day of Classes, Term C</td>
</tr>
<tr>
<td>March 3</td>
<td>Reserved for Snow Makeup</td>
</tr>
<tr>
<td>March 4-15</td>
<td>Spring Recess</td>
</tr>
<tr>
<td>March 15-17</td>
<td>Course Changes for Term D</td>
</tr>
<tr>
<td>March 16</td>
<td>First Day of Classes, Term D</td>
</tr>
<tr>
<td>April 1</td>
<td>Tuition Deposit Due for Returning Students to Confirm Schedule</td>
</tr>
<tr>
<td>April 20-21</td>
<td>Project Registration for ’00-’01</td>
</tr>
<tr>
<td>April 20</td>
<td>Project Presentation Day (No Classes)</td>
</tr>
<tr>
<td>May 2</td>
<td>Deadline for Completion of Degree Requirement Forms for May 2000 Candidates</td>
</tr>
<tr>
<td>May 4</td>
<td>Last Day of Classes, Term D</td>
</tr>
<tr>
<td>May 5</td>
<td>Last Day of Classes for Semester Courses</td>
</tr>
<tr>
<td>May 6</td>
<td>12 noon - Residence Halls Close</td>
</tr>
<tr>
<td>May 19</td>
<td>Baccalaureate Ceremony</td>
</tr>
<tr>
<td>May 20</td>
<td>Spring Commencement</td>
</tr>
<tr>
<td>May 29</td>
<td>Memorial Day Holiday</td>
</tr>
<tr>
<td>May 31</td>
<td>Enrollment Day, Term E</td>
</tr>
<tr>
<td>May 31-June 1</td>
<td>Course Changes for Term E</td>
</tr>
<tr>
<td>June 1</td>
<td>First Day of Classes, Term E</td>
</tr>
<tr>
<td>June 2-4</td>
<td>Alumni Reunion</td>
</tr>
<tr>
<td>July 3-4</td>
<td>Independence Day Holiday</td>
</tr>
<tr>
<td>July 21</td>
<td>Last Day of Classes, Term E</td>
</tr>
<tr>
<td>August 23</td>
<td>Deadline for Completion of Degree Requirement Forms for Fall 2000 Candidates</td>
</tr>
</tbody>
</table>

2000-2001 Academic Year

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 16</td>
<td>Tuition for Terms A and B Due</td>
</tr>
<tr>
<td>August 26</td>
<td>Residence Halls Open for NEW Students; New Student Orientation (Freshmen/Transfer) Begins</td>
</tr>
<tr>
<td>August 27</td>
<td>Residence Halls and Apartments Open for Returning Students</td>
</tr>
<tr>
<td>August 29-30</td>
<td>Enrollment for Term A</td>
</tr>
<tr>
<td>August 30</td>
<td>Deadline for Completion of Degree Requirement Forms for Fall 2000 Graduation</td>
</tr>
<tr>
<td>August 31</td>
<td>First Day of Classes, Term A</td>
</tr>
<tr>
<td>August 31 (Th.)</td>
<td>Follow MONDAY Class Schedule</td>
</tr>
<tr>
<td>September 4</td>
<td>Labor Day Holiday (No Classes)</td>
</tr>
<tr>
<td>September 5</td>
<td>First Day of Classes for Graduate Courses</td>
</tr>
<tr>
<td>October 9</td>
<td>President’s IQP Awards Entry Deadline</td>
</tr>
<tr>
<td>October 19</td>
<td>Last Day of Classes, Term A</td>
</tr>
<tr>
<td>October 20-29</td>
<td>Fall Recess</td>
</tr>
<tr>
<td>October 30</td>
<td>First Day of Classes, Term B</td>
</tr>
<tr>
<td>November 4</td>
<td>Homecoming</td>
</tr>
<tr>
<td>November 23-26</td>
<td>Thanksgiving Recess</td>
</tr>
<tr>
<td>December 6</td>
<td>President’s IQP Award Competition</td>
</tr>
<tr>
<td>December 18</td>
<td>Follow Thursday Class Schedule</td>
</tr>
<tr>
<td>December 19</td>
<td>Last Day of Classes, Term B (follow Friday class schedule)</td>
</tr>
<tr>
<td>December 20-21</td>
<td>12 noon - Residence Halls Close For Term Break</td>
</tr>
<tr>
<td>January 10, 2001</td>
<td>Winter Recess</td>
</tr>
<tr>
<td>January 3</td>
<td>Tuition for Terms C and D Due</td>
</tr>
<tr>
<td>January 7</td>
<td>Residence Halls Open for Term C</td>
</tr>
<tr>
<td>January 9-10</td>
<td>Enrollment for Term C</td>
</tr>
<tr>
<td>January 10</td>
<td>Deadline for Completion of Degree Requirement Forms for February 2001 Candidates</td>
</tr>
<tr>
<td>January 11</td>
<td>First Day of Classes, Term C</td>
</tr>
<tr>
<td>January 15</td>
<td>First Day of Classes for Graduate Courses</td>
</tr>
<tr>
<td>February 15</td>
<td>Advising Appointment Day (No Classes)</td>
</tr>
<tr>
<td>March 1</td>
<td>Last Day of Classes, Term C</td>
</tr>
<tr>
<td>March 2</td>
<td>Reserved for Snow Makeup</td>
</tr>
<tr>
<td>March 2-12</td>
<td>Spring Recess</td>
</tr>
<tr>
<td>March 13</td>
<td>First Day of Classes, Term D</td>
</tr>
<tr>
<td>April 19-20</td>
<td>Project Registration for ’01-’02</td>
</tr>
<tr>
<td>April 19</td>
<td>Project Presentation Day (No Classes)</td>
</tr>
<tr>
<td>April 27</td>
<td>Last Day of Classes for Semester Courses</td>
</tr>
<tr>
<td>April 27</td>
<td>Deadline for Completion of Degree Requirement Forms for May 2001 Candidates</td>
</tr>
<tr>
<td>May 1</td>
<td>Last Day of Classes, Term D (follow Thursday class schedule)</td>
</tr>
<tr>
<td>May 2</td>
<td>12 noon - Residence Halls Close</td>
</tr>
<tr>
<td>May 19</td>
<td>Baccalaureate Ceremony</td>
</tr>
<tr>
<td>May 19</td>
<td>Spring Commencement</td>
</tr>
<tr>
<td>May 28</td>
<td>Memorial Day Holiday</td>
</tr>
<tr>
<td>May 30</td>
<td>Enrollment Day, Term E</td>
</tr>
<tr>
<td>May 31</td>
<td>First Day of Classes, Term E</td>
</tr>
<tr>
<td>June 1-3</td>
<td>Alumni Reunion</td>
</tr>
<tr>
<td>July 4</td>
<td>Independence Day Holiday</td>
</tr>
<tr>
<td>July 19</td>
<td>Last Day of Classes, Term E</td>
</tr>
<tr>
<td>August 29</td>
<td>Deadline for Completion of Degree Requirement Forms for Fall 2001 Candidates</td>
</tr>
<tr>
<td>Month</td>
<td>1</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>AUG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SEP</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td>MAR</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td>APR</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
<tr>
<td>MAY</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>JUNE</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td>JULY</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
<tr>
<td>AUG</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td>FEB</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>27</td>
</tr>
<tr>
<td>JUN</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MAY</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td>JUN</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td>JULY</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td>JUN</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Notes:
- **August 31 = MONDAY schedule**
- **Dec. 18 = Thurs. schedule**
- **Dec. 19 = Friday schedule**

Events:
- **May 1 = THURSDAY Schedule**
- **MARCH 2 SNOW DAY (AS NEEDED)**
- **APRIL 19 PROJECT PRESENTATION DAY**
- **MAY 28 MEMORIAL DAY**
- **JULY 4 INDEPENDENCE DAY**
- **FEBRUARY 15 ACADEMIC ADVISING DAY (PROJ. OPPORTUNITIES)**
<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>FEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>MAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>APR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>MAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>JUNE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>JULY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>AUG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>FEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

GRADUATION

- **FEBRUARY**: 24th
- **JUNE**: 22nd
- **FALLOWS**: 19th
- **MAY**: 17th
- **JULY**: 15th

SUMMER
CONTENTS

Chronology of Academic Schedule
and Events Inside Front Cover
Undergraduate Calendar 2000/2001 i
Graduate Calendar 2000/2001 ii
The Mission of WPI 3
WPI’s Commitment to Pluralism 3
The Goal of WPI 4
The Two Towers Tradition: The Second Century ... 5
The WPI Plan 5
WPI: A Global Technological University 6
Resources Available to Undergraduates 8

SECTION 1:
THE WPI PLAN 19

- WPI Degree Requirements 20
- The Planning Process 21
- Academic Advising 22
- Major Areas of Study 22
- Concentrations 23
- Minors 24
- Double Majors 25
- Minimum Distribution Requirements For Students 26
- Courses Qualifying For Engineering
 - Distribution Areas 32
 - Projects 33
 - Projects Program 35
 - Project Centers 35
 - The Major Qualifying Project 36
 - The Interactive Qualifying Project 37
 - Residential Project Programs 45
 - On-Campus IQP Programs 50
 - Awards and Scholarships 50
 - The Sufficiency 51
 - The Social Science Requirement 57
 - Awards and Prizes 58

SECTION 2:
DEPARTMENT AND PROGRAM DESCRIPTIONS 61

- Aerospace Studies 62
- Biology/Biotechnology 63
- Biomedical Engineering 65
- Chemical Engineering 67
- Chemistry and Biochemistry 71
- Civil and Environmental Engineering ... 74
- Computer Science 79
 - Computer Science Minor 83
 - Electrical and Computer Engineering 84
 - Engineering Science Courses 88
 - Engineering Physics 89
 - Environmental Programs 89
 - Fire Protection Engineering 91
 - Humanities and Arts 91
 - Minor in Foreign Language (German or Spanish) 94
 - Music Minor 95
 - Industrial Engineering 95
 - Interdisciplinary Programs 95
 - International Studies 97
 - Law and Technology Minor 99
 - Management 99
 - Entrepreneurship Minor 106
 - Management Minor 107
 - Management Information Systems Minor 107
 - Organizational Leadership Minor 107
 - Manufacturing Engineering 108
 - Materials Engineering 110
 - Mathematical Sciences 111
 - Mechanical Engineering 117
 - Military Science 122
 - Nuclear Engineering 124
 - Physical Education 124
 - Athletic Programs 124
 - Physics 125
 - Physics Minor 129
 - Pre-Law Programs 129
 - Pre-MBA Program (Dual Degree) 130
 - Pre-Medical, Pre-Dental and
 - Pre-Veterinary Programs 130
 - Social Science and Policy Studies ... 131
 - Social Science Minors 139
THE MISSION OF WPI

WPI educates talented men and women in engineering, science, management, and humanities in preparation for careers of professional practice, civic contribution, and leadership, facilitated by active lifelong learning. This educational process is true to the founders’ directive to create, to discover, and to convey knowledge at the frontiers of academic inquiry for the betterment of society. Knowledge is created and discovered in the scholarly activities of faculty and students ranging across educational methodology, professional practice, and basic research. Knowledge is conveyed through scholarly publication and instruction.

Adopted by the Board of Trustees, May 22, 1987

WPI'S COMMITMENT TO PLURALISM

Pluralism, as a social condition, means that several distinct ethnic, religious, and racial communities live side by side, have equitable access to resources, are willing to affirm each other’s dignity, are ready to benefit from each other’s experiences, and are quick to acknowledge each other’s contributions to the common welfare. Recognizing the importance of pluralism to creativity, innovation, and excellence, WPI is dedicated to creating an atmosphere that encourages diversity in all aspects of campus life—from academics, to residence hall living, to social interactions among students, faculty, and staff. The Institute recognizes the special obligation of promoting a multicultural community based on mutual respect and tolerance. This commitment is part of WPI’s institutional plan for encouraging pluralism and increasing diversity, a plan that proclaims the importance of having students understand and appreciate other cultures, and prepares them fully to pursue rewarding careers in an increasingly global economy.

Concepts endorsed by the WPI Faculty on April 21, 1994.
WPI was founded in 1865 to create and convey the latest science and engineering knowledge in ways that would be most useful to the society from which its students came. Since that time, the disciplines of human inquiry have expanded extraordinarily, as have WPI's constituencies. The WPI curriculum, accordingly, has been reshaped numerous times, but it has remained true to its original mission of fusing academic inquiry with social needs, of blending abstraction with immediacy, of linking new knowledge to applications.

The goals of the undergraduate program are to lead students to develop an excellent grasp of fundamental concepts in their principal areas of study; to lay a foundation for life-long renewal of knowledge; to gain a mature understanding of themselves; and, most importantly, to form a deep appreciation of the interrelationships among basic knowledge, technological advance, and human need. These principles are today manifest in the WPI Plan, a unique, project-oriented program which emphasizes intensive learning experiences and direct application of knowledge. WPI remains committed to continued educational improvement and innovation.

The goals of WPI's programs of graduate instruction and research are to create and convey knowledge at the frontiers of academic inquiry. These endeavors are founded on the principle that vigorously pursued and rigorously assessed scholarship is the lifeblood of the institution. High quality graduate instruction conveys the arts of scholarship to new generations, and it assists working professionals in maintaining currency in a world where knowledge becomes obsolete with ever-increasing rapidity.

A WPI education encompasses continuous striving for excellence coupled with an examination of the contexts of learning so that knowledge is won not only for its own sake but also for the sake of the human community of which the people of WPI are part.

Endorsed by the WPI Faculty on March 5, 1987, and by the Board of Trustees on October 16, 1987.
WPI, the nation’s third oldest private engineering college, was established in 1865 by the New England industrialists John Boynton, Ichabod Washburn, and their associates. Boynton and Washburn endowed the first two buildings on campus, as academic classrooms and practical shops. Boynton Hall and the Washburn Shops — renovated today into state-of-the-art facilities — still preserve their distinctive original towers. These “Two Towers” represent WPI’s continued commitment to academic excellence through real-life project experience that synthesizes classroom learning.

The “Two Towers” tradition of academic achievement and practical application is reflected in WPI’s motto, “Lehr und Kunst” or “Theory and Practice.”

WPI has awarded graduate degrees since 1898, adding new programs regularly in response to the developing needs of the professional world. WPI is among the top 50 science colleges in the nation in terms of the percentage of undergraduates who receive doctorates. Presently, WPI offers the master’s degree in 15 disciplines and the doctorate in 14.

The current student body of over 3,600 men and women includes about 1,000 full- and part-time graduate students. Currently, students attend WPI from almost every state and over 60 foreign nations.

THE WPI PLAN

In 1970 WPI adopted a revolutionary new undergraduate program known as the WPI Plan. The Plan replaced the traditional rigidly-prescribed curriculum — typical of conventional engineering education — with a flexible, exciting, and academically challenging program aimed at helping students to learn how to learn.

The Plan continues the “Two Tower” tradition by synthesizing classroom experience in projects that solve real-world problems. The WPI project program prepares graduates for their future professional lives by helping them learn how to identify, investigate and report on open-ended problems. Alumni indicate that project experiences also prepare them uniquely well for managing team efforts, and for communicating both in oral and written forms according to professional standards.

All WPI students complete three projects. The Major Qualifying Project (or MQP) challenges students to solve problems typical of those to be encountered in their professional discipline. The Interactive Qualifying Project (or IQP) presents an issue at the intersection of science, technology, and culture, and emphasizes the need to learn about how technology affects societal values and structures. Also, students complete a Sufficiency project on a theme emerging from a five-course, self-selected series of courses in Humanities and Arts, thus insuring that WPI students develop an understanding of the humanities as well as of technology. Taken together, the three projects emphasize that technological professionals must learn not only to create technology, but also to assess and manage the social and human consequences of that technology.
WPI students must prepare to live and work in the interdependent world of the next century. Professionals no longer can study, and live in ignorance of other countries and cultures, as professional practice and commerce increasingly cross over national boundaries.

WPI thus emphasizes real-world project experience, and provides extensive opportunities for studying the kinds of global issues that will dominate professional and political life in the 2000’s.
Project Sites

Bangkok, Thailand
Boston, Mass., USA
Copenhagen, Denmark
Darmstadt, Germany
Greenbelt, Maryland, USA
Kariba, Zimbabwe
Limerick, Ireland
London, England
Madrid, Spain
Melbourne, Australia
San Jose, Costa Rica
San Juan, Puerto Rico, USA
Silicon Valley, Calif., USA
Venice, Italy
Washington, D.C., USA
Worcester, Mass., USA
To support classroom and project work, WPI makes every effort to provide students with hands-on experience with state-of-the-art research and support facilities. Below are a few of the facilities available to WPI undergraduates:

COMPUTER RESOURCES

RESOURCES IN ATWATER KENT LABORATORIES

ECE PC LABORATORIES
1st Floor

Thirty-five networked Pentium-class personal computers are available for courses and open student lab work in the Electrical and Computer Engineering Department.

RESOURCES IN FULLER LABORATORIES

WPI’s newest academic building, Fuller Laboratories, is designed to provide dedicated space for faculty, staff and students working in the information sciences. The WPI College Computer Center (CCC) is located in this building, along with the Computer Science Department and the Instructional Media Center.

CCC provides a wide range of services and access to computer resources for the WPI community and manages an array of powerful UNIX workstations. All WPI students, faculty, and staff can obtain a login ID at CCC for academic course work, research, and self-education. The same login ID and password provides access to these systems. The ID will remain in force as long as the person continues to be registered as a student or to be employed by WPI. The systems have been configured so that the user will see the same familiar environment no matter which CCC workstation is used.

CCC facilities are accessible from a wide variety of locations on campus, or via modem, or from around the world via the Internet. CCC operates the campus data network, the modem bank, and the campus Internet connectivity. Computer systems operated by academic departments are also on the same CCC communications infrastructure, so they are accessible just as easily.

PC file servers drive laser printers in the Advanced Data Preparation (ADP) Lab, CCC and other locations across campus. Also accessible in the CCC is a color postscript laser printer, scanning devices and a CD Writer. The servers provide file service for many software packages including PC-based desktop publishing, spread sheets, databases, programming languages, department courseware, and a scientific typesetting system. Since the server is network based, it offers consistent service across the WPI campus network. A menu setup offers simple server access to personal files as the CCC lab.

Since the campus network distributes computing services across the campus, network-attached PC’s in other buildings can use the CCC print service to generate high-quality output for reports and resumes. CCC distributes PC-compatible computers for use by faculty and students. More than 350 of these personal computers are available for student use in general-access laboratories, computer classrooms, and specialized laboratories. CCC supports the residence network services. Students in residence centers who select this service can access the same software and interface available in CCC pc labs across campus.

CCC operates the administrative system, which provides data processing services to WPI administrative offices. The WPI student information system, based on a fourth-generation language database software, provides ready access to important registration information.

CCC manages a computer help desk to answer users’ questions on any of the computer platforms and provide short instruction sessions on supported software. CCC also provides technical support for endorsed packages. Several special computer environments are maintained, including several PC classrooms and open-access PC laboratories.

GENERAL COMPUTER SCIENCE DEPARTMENT FACILITIES

Fuller 2nd Floor

The department is housed in the new specially designed Fuller Laboratories building, providing substantial office and laboratory space. A wide variety of computing equipment is available for course work, project work, and research in computer science.

The department has multiple DEC Alpha, Sun UltraSPARC, SGI, and Intel machines running DEC Unix, Solaris, IRIX, and Linux for interactive use. These may be accessed via roughly 70 PC’s and 50 X terminals throughout the department, as well as from any of CCC’s publicly available computers.

The department maintains an extensive array of software packages, including the X Window System, OSF/Motif, OpenLook, and simulation packages. Languages supported include C, C++, FORTRAN, Lisp, Pascal, Prolog, and Java.

Every classroom, laboratory and office in Fuller Labs is connected to the campus-wide high speed communications network. The network provides access to other computing resources, including the College Computer Center, and the Internet.
The Design Studio
2nd Floor
The Design Studio provides an environment linked by computational equipment and networks to outside manufacturing facilities. Video link equipment, and high-end Sun Workstations with software support for video-picture-within-the-monitor teleconferencing, provide two-way communication of audio, video, and data between the Design Studio and to off-campus sites.

In the computationally equipped studio, students have clustered seating about multiple workstations. Design work can be done on the workstations and discussed or analyzed with off-campus sponsors or collaborators in real time as changes are made. Part files can be ported to rapid prototyping machines or lithography units within the Design Studio and beyond. Video cameras at the prototyping stations show the real-time fabrication within a window on the workstations.

MECHANICAL ENGINEERING GRADUATE STUDENT COMPUTER LABORATORY
[Mechanical Engineering] Higgins Laboratory: 2nd Floor
To provide the ME graduate students with the latest research and course capabilities, this lab is equipped with workstations, and PC's. All machines are networked to the WPI College Computing Center and the department local servers.

RESOURCES IN THE WASHBURN LABORATORIES

THE WASHBURN DESIGN STUDIO
1st Floor
The Washburn Design Studio provides the students with a prototype production facility and design studio linked by computational equipment and networks. Video link equipment and Sun Workstations with software support for video-picture-within-the-monitor teleconferencing, provide two-way communication of audio, video, and data between the Washburn Design Studios and to off-campus sites.

MANAGEMENT MICROCOMPUTER LABORATORY
2nd Floor
The Management Microcomputing Lab contains fifteen personal computers that are networked to the University backbone. Spreadsheet, word processing, and database management packages are accessible from the lab, as well as software for simulation, quality control, and management science analyses. Students use the lab for course work and projects. Because many students have access to other PCs where they live and elsewhere on campus, this lab is open only during normal business hours for the Department of Management.
PROJECT AND EDUCATIONAL FACILITIES

ALUMINUM CASTING RESEARCH LABORATORY (ACRL)
(See full description under Research Centers and Institutes on page 11.)

POWDER METALLURGY RESEARCH CENTER (PMRC)
(See full description under Research Centers and Institutes on page 11.)

SEMISOLID MATERIALS PROCESSING LABORATORY (SSMP)
(See full description under Research Centers and Institutes on page 11.)

CENTER FOR HEAT TREATING EXCELLENCE (CHTE)
(See full description under Research Centers and Institutes on page 11.)

COMPUTER SCIENCE PROJECT LABORATORIES
Fuller
Because project work is a significant part of a WPI education, the Computer Science Department has several laboratories devoted to undergraduate and graduate project work. These laboratories have a wide variety of computer equipment available for student use.

DISCOVERY CLASSROOM
[Mechanical Engineering] Higgins: 2nd Floor
This state-of-the-art facility provides a non-traditional, discovery-based learning environment that supports learning modules which unify the analytical, computational, and experimental engineering approaches. The classroom seats 90 and features experimental facilities that allow students to examine the details of physical phenomena during interactive class exercises. A large-screen display and notebook computers at student desks provide complete telecommunication and video link capabilities. A multi-purpose laboratory adjacent to the classroom permits small-group exercises and design work.

ENGINEERING EXPERIMENTATION LABORATORY
[Mechanical Engineering] Higgins: 2nd Floor
The Experimental Laboratory provides the support for undergraduate courses designed to develop analytical and experimental skills in modern engineering methods based on current electronic instrumentation and computer-based data acquisition systems. Engineering analysis and design, and the principles of instrumentation are emphasized. The laboratory affords the student an opportunity to use modern devices in actual experiments in areas such as heat transfer, flow measurement and visualization, force/torque/strain measurements, motion and vibration measurements, and laser applications.

MECHANICAL ENGINEERING LARGE PROJECT LABORATORY
[Mechanical Engineering] Higgins: Basement
The Project Lab is a dedicated multipurpose laboratory for Major Qualifying Projects, which need construction and storage space. This lab includes a fully staffed machine shop to assist the students in the design, layout and fabrication of components needed for students’ experiments.

RESEARCH CENTERS AND INSTITUTES

A number of faculty members have formed multi-disciplinary research centers and institutes at WPI. These active research centers and programs provide excellent and unique interdisciplinary research opportunities. All of these centers and groups conduct outstanding state-of-the-art research sponsored by governmental and industrial agencies.

The centers listed and described below offer opportunities to undergraduates to work with ongoing research activities through MQPs, industrial internships, coop opportunities, summer employment and international project activities.

CENTER FOR HOLOGRAPHIC STUDIES AND LASER TECHNOLOGY (CHLST)
Washburn
The CHSLT was founded in 1978 and consists of ten laboratories furnished with state-of-the-art facilities which are used for research and educational activities. These activities range from fundamental studies of laser light interaction with materials to sophisticated applications in metrology.

The CHSLT research is in areas relating to microelectronics, radar technology, microtechnology, micromechanics, submarine technology, jet engine technology, avionics, biomedicine, modern powder materials, ceramics, composites, energy systems, micro-scale material science and engineering, interconnection technology, and computational modeling. The strength of the CHSLT lies in a comprehensive utilization of laser technology, optics, computational methods, mechanical engineering, materials science and engineering, and computer data acquisition and processing. Building on these strengths, greatly diversified projects in a number of areas of current interest are being conducted using the Center’s own technique and innovative methods.

The CHSLT develops and maintains cooperative and exchange programs with leading teaching and research institutions in the United States and abroad.

METAL PROCESSING INSTITUTE (MPI)
[Washburn 326]
The Metal Processing Institute (MPI) is an industry-university alliance. Its mission is to design and carry out research projects identified in collaboration with MPI’s industrial partners in the field of near and net shape manufacturing. MPI creates knowledge that will help enhance the productivity and competitiveness of the metal processing industry, and develops the industry’s human resource base through the education of WPI students and the dissemination of new knowledge. More than 90 private manufacturers participate in the institute and their
support helps fund fundamental and applied research that addresses technological barriers facing the industry. The MPI researchers also develop and demonstrate best practices and state-of-the-art processing techniques.

MPI offers educational opportunities and corporate resources to both undergraduate and graduate students. Specifically,

- Co-op opportunities.
- International exchanges and internships with several leading universities around the globe—Europe and Asia.
- MQP opportunities with the industrial sector wherein the students spend the summer months prior to their senior year in industry.
- Graduate internship programs leading to a Masters or Doctoral degree where the research work is carried out at the industrial site.

For further details visit the MPI office on the third floor of Washburn, Room 326 or the MPI website: www.wpi.edu/+mpi.

MPI’s research programs are carried out by four distinct research consortia. These are described below:

- Aluminum Casting Research Laboratories (ACRL)
- Powder Metallurgy Research Center (PMRC)
- Semisolid Materials Processing Laboratories (SSMP)
- Center for Heat Treating Excellence (CHTE)

ALUMINUM CASTING RESEARCH LABORATORY (ACRL)

[Mechanical Engineering] Washburn 009

The laboratory provides experimental facilities for course laboratories and for undergraduate and graduate projects. The laboratory is equipped with extensive melting and casting facilities, computerized data acquisition systems for solidification studies, thermal analysis units, liquid metal filtration apparatus, rheocasting machines and a variety of heat treating furnaces. The laboratory has strong collaborations with industry and students work directly with professional engineers from sponsoring companies. Thirty corporate members participate in and support the ACRL research programs. Students scholarships offered by the Foundry Education Foundation (FEF) are available through the laboratory. The ACRL conducts workshops, seminars, and technical symposiums for national and local industries. The laboratory is available throughout the year for project activity and thesis work as well as coop and summer employment. Project opportunities at international sites are also available through ACRL/MPI.

POWDER METALLURGY RESEARCH CENTER (PMRC)

[Mechanical Engineering] Washburn 3rd Floor

The Center addresses the scientific, engineering, and managerial problems of the powder metallurgy industry. By integrating facilities from different disciplines, the center has developed research programs in engineering and management, addressing new technologies as well as methodologies for their implementation, i.e., valve creation and management issues in a small fragmented industry. The objectives of the PMRC are as follows:

- Establish an educational and research center for the Powder Metallurgy Industry, and to provide a vehicle for manufacturing excellence and competitiveness of the industry.
- Establish long term relationships between the academic community and members of management, manufacturing, and research in the P/M industry.
- Develop course and project experiences for graduate and undergraduate students that will foster an understanding of the industry.

Eighteen corporate members participate and support the PMRC research programs. MQP project opportunities, industrial internships, coop opportunities and summer employment are available through PMRC/MPI.

SEMISOLID MATERIALS PROCESSING LABORATORY (SSMP)

[Mechanical Engineering] Washburn 001

The Semisolid Materials Processing Laboratory brings together, in a multidisciplinary and participatory fashion, the academic and industrial communities interested in semisolid technologies. The goal of the laboratory is to produce a concentrated effort directed toward achieving a better understanding of fundamental issues concerning semisolids, such as their constitutive behavior and their performance during processing.

The laboratory facilities include metalcasting facilities, workstations for modeling work, complete metallurgical analysis and characterization facilities. The laboratory has joint research programs with the solidification laboratory at MIT and Oak Ridge National Laboratory. The laboratory has also exchange programs with the University of Aachen in Germany, the Institute for Problems in Mechanics of the Russian Academy of Sciences, the National Technical University of Norway where students can perform projects.

SSMP research agenda focuses on flow behavior as a function of process parameters such as temperature, solid fraction, microstructure and process history; and simulation of shape-making operations and correlation with experiments. Twenty-two corporate members participate in and support the SSMP research agenda.

CENTER FOR HEAT TREATING EXCELLENCE (CHTE)

[Mechanical Engineering] Washburn 3rd Floor

The Center is an alliance between the industrial sector and researchers to collaboratively address short-term and long-term needs of the heat treating industry. It is the Center’s intent to enhance the position of the heat treating industry by applying research to solve industrial problems and to advance heat treatment technology. The Center’s objective is to advance the Frontiers of thermal processing through fundamental research and development.

Specifically, the Center will pursue research to develop innovative processes to:

- Control microstructure and properties of metallic components
- Reduce energy consumption
- Reduce process time
- Reduce production costs
- Achieve zero distortion
- Increase furnace efficiency
- Achieve zero emissions

Over fifty corporate members participate and support the CHTE research programs. MPI project opportunities, industrial internship, coop opportunities and summer employment are available through CHTE/MPI.
RESEARCH LABORATORIES AND FACILITIES

These labs are MQP and research activity opportunities.

ADVANCED MATERIALS PROCESSING LABORATORY
[Mechanical Engineering] Washburn
The laboratory provides processing equipment, including a hot press, a high temperature sintering furnace (2200˚C), several furnaces, and a swager.

AEROSPACE LABORATORY
[Mechanical Engineering] Higgins: Basement
These experimental facilities provide support for courses, major qualifying projects, faculty and graduate student research. The facilities and instrumentation include a closed-return, high quality 2’x2’ wind tunnel, a subsonic open-return wind tunnel with a 18 by 24 inch test section, a supersonic flow facility, hot-wire anemometry system, laser doppler system, computer data acquisition systems, an ultrasonic measurement system, and high speed flow visualization systems.

ANALOG/MIXED SIGNAL MICROELECTRONICS LABORATORY
Atwater Kent
The Analog/Mixed Signal Microelectronics Research Laboratory comprises instrumentation, workstations, and software for the complete integrated circuit design process. Full CAD software tools are available for schematic capture, simulation, layout, parasitic extraction, and layout-vs.-schematic verification. Fabrication facilities are available through MOSIS and the industry partners. The equipment required to test the fabricated circuits (thereby verifying the design principles and completing the design process) has been purchased with a grant awarded by the National Science Foundation under the CISE Research Instrumentation Grant program. The lab is a tremendous enabling resource for test and evaluation to “complete the loop” for the design process. Since the instrumentation capability extends to 2.5GHz speeds, this lab will be a valuable resource for many years to come.

BIOMECHANICAL ENGINEERING LABORATORIES
[Mechanical Engineering] Higgins: 1st Floor
This complex provides experimental and computational facilities for the laboratory component of courses, major qualifying projects, and graduate research. The Biomechanical Engineering Laboratory complex includes the following:

The Biomechanics/Biofluids Laboratory: provides experimental facilities in the areas of biomechanics and biofluids. The laboratory has equipment for measuring force, deformation and kinematic variables as well as fluid flow, pressure and velocity. The laboratory contains PC-based computational and data acquisition facilities.

The Biomaterials Laboratory: is equipped for the evaluation of biological tissues, biomedical materials and surgical constructs with a focus on orthopedic and dental applications. The laboratory contains a computer controlled biaxial testing machine for use in these studies.

The Rehabilitation Engineering Laboratory: provides experimental facilities for the design, development and testing of electro-mechanical assistive devices. The Assistive Technology Resource Center is a part of the laboratory.

BIOPROCESS LABORATORY
Salisbury
The Department of Biology and Biotechnology has a 1600 square foot laboratory for courses, projects and research in bioprocess engineering, which is the application of biotechnology and engineering principles to produce valuable products. This lab houses state-of-the-art equipment for fermentation, centrifugation, tangential flow filtration, rheometry, spectrophotometry, and high performance liquid chromatography. The lab is used for courses in Recombinant DNA, Fermentation, Separation of Biological Molecules, Downstream Processing, and a course in Scale-Up that enables students to gain experience in bioprocessing at the 50 liter scale. This combination of facilities and courses gives WPI students experience unmatched by any other university in the country.

BIOSENSORS/BIOINSTRUMENTATION LABORATORY
Salisbury
The Biosensors/Bioinstrumentation Laboratory supports a wide range of activities related to the development and testing of various invasive and noninvasive biosensors and associated bioinstrumentation. The laboratory is available for MQP project activities and graduate level research.

The facility consists of basic optical, electro-optical, and electronic measurement equipment including several microcomputer-based PC data acquisition systems for advanced signal processing. The facility is also equipped with clinical instrumentation to measure blood gases.

Other equipment is available to support a broad range of in vitro and in vivo experimentation.

CERAMIC AND POWDER METALLURGY PROCESSING LABORATORY
[Mechanical Engineering] Washburn
This facility serves the Materials Science and Engineering Program, the Manufacturing Engineering Program, and other departments. The laboratory contains a variety of powder processing and characterization equipment, as well as equipment for green body consolidation and sintering. A specially equipped room houses the electric discharge-machining laboratory.
COMPUTATIONAL FIELDS LAB
Atwater Kent
The purpose of the Computational Fields Laboratory in the Electrical and Computer Engineering Department is to serve as a computational resource to undergraduate and graduate students interested in numerical analysis as applied to problems in computational electrodynamics and acoustics.

The lab contains a wide variety of platforms, including personal computers, and several Unix Workstations. Software utilities supporting numerical analysis (mesh-making algorithms, matrix solvers, graphics interface drivers) are of particular interest to the lab community, as well as developing integrated packages targeted for research or educational purposes.

COMPUTATIONAL GAS AND PLASMA DYNAMICS LABORATORY (CGPL)
[Mechanical Engineering] Higgins: 3rd Floor
The mission of CGPL is to develop and apply advanced computational methodologies in the modeling of complex gas and plasma flows. Research studies in CGPL are focused on aerospace systems and technologies that include: electric propulsion, spacecraft-induced environment interactions, small thruster internal and plume flows, rarefied gas dynamics, magnetogas dynamics, and crystal growth in microgravity. Strong emphasis is placed in CGPL’s participation in space programs and missions. CGPL is equipped with several UNIX and NT workstations, data storage devices and printers.

COMPUTER ARCHITECTURE LABORATORY
Atwater Kent
This laboratory in the ECE Department contains facilities for the research and development of both single processor and multiprocessor systems.

The laboratory is equipped with logic analyzers, in-circuit emulators, numerous software tools, and other equipment to support computer systems projects.

DATA/KNOWLEDGE BASE RESEARCH LABORATORY
Fuller
The Data/Knowledge Base Research Laboratory supports research in very large data and knowledge base systems. Current research covers four topics; 1) scientific database management systems; 2) distributed file structures; 3) visual database languages, and 4) implementation techniques for recursive query processing in very large deductive databases. The laboratory is equipped with a number of Pentium and P2-based PCs.

DISTRIBUTED PROCESSING LABORATORY
Fuller
The Distributed Systems Laboratory supports research and project work in distributed processing and distributed systems. The laboratory contains three HP Vectra 80486 machines, and a number of Windows NT PC’s for project use.

ECE MACHINE VISION LABORATORY
Atwater Kent
A wide range of image processing and pattern recognition problems, ranging from robot vision to detection of irregular heartbeats, is studied in the Electrical and Computer Engineering Department’s Machine Vision Laboratory. Equipment includes PC’s, DEC Alpha and Silicon Graphics Workstations, and image capture and display equipment.

ELECTROCHEMISTRY, TRIBOLOGY, AND CORROSION LABORATORIES
[Mechanical Engineering] Washburn
These experimental facilities provide for the study of corrosion, erosion, wear and electrochemistry of materials. Included are potentiostat/galvanostats for experimental control data collection using an EG&G Princeton Applied Research Co. computer-assisted electrochemistry system. Equipment is also available for fretting, corrosion, cavitation erosion, and dry-sliding friction testing.

FIRE SCIENCE LABORATORY
[Fire Protection Engineering] Higgins: Basement
The Fire Science Laboratory supports small-scale experimentation in fire dynamics, combustion/explosion phenomena, detection, and fire and explosion suppression. A standard flame spread apparatus, burners, cone calorimeter, room calorimeter and a data acquisition system are available along with functional sprinkler and alarm systems.

Serving as both a teaching and research facility, the lab accommodates undergraduate projects as well as graduate students in fire protection engineering, mechanical engineering, and related disciplines.

FLUID DYNAMICS LABORATORY
[Mechanical Engineering] Higgins: 3rd Floor
This laboratory provides experimental facilities and instrumentation for experimental activities in the area of fluid dynamics. A small, open-return subsonic wind tunnel is available for use, and small experiments may be set up as required. Separate areas are provided for model preparation and small-scale experiments on space experiment packages.

HEAT TRANSFER LABORATORY
[Mechanical Engineering] Higgins: 3rd Floor
This versatile laboratory provides adaptive workstations and experimental facilities for courses and projects in the general areas of heat transfer and combustion. It also includes equipment and computational and experimental set-ups for graduate work in these areas.

HYDRODYNAMICS LABORATORY
[Mechanical Engineering] Higgins: Basement
This laboratory provides experimental facilities and instrumentation for measurement of liquid flow phenomena. A closed-circuit free surface water tunnel with a 2 ft. by 2 ft. test section and a vertical water tank are available for MQP’s and research. These facilities are primarily for flow visualization are supported by data acquisition systems and various flow measurement devices.
LASER LABORATORIES
[Mechanical Engineering] Higgins: 1st Floor
The Laser Laboratories are equipped with several systems utilizing He-Ne, Ar-ion, and Nd:YAG lasers. They are supported by a self-contained network of computers including computing and plotting facilities, as well as supporting instrumentation systems. The lasers, computers and supporting instrumentation are used in studies of fundamental phenomena governing high energy-density interactions in thin film imaging, with powder metal materials, plastics, ceramics, and composites, micromachining, underwater propagation, holography, displacement and strain measurement, vibrations, fracture mechanics, mathematical modeling, numerical computations, and applications to other problems of modern science, engineering and technology. This laboratory is available to students for course work, project work, and graduate research.

MANUFACTURING LABORATORY
[Mechanical Engineering] Washburn: 1st Floor
A wide range of manufacturing processes including plastics and composites manufacturing, casting and welding of alloys, cold pressing, sintering of ceramics and CNC milling are available to support the academic programs in Manufacturing Engineering and Mechanical Engineering. Students can also draw on many other resources available including a wide variety of robots, a coordinate measuring machine, and CAD/CAM systems.

MATHEMATICS LABORATORIES
To complement WPI’s math classes, the department has two computer laboratories: The Statistics Multimedia Classroom, an interactive classroom with 100MHz PC’s; The Math Lab with X-terminals. The labs are also supported by a full time Computer Operations Manager and Instructors’ Associates who assist students with their mathematical computer needs.

MECHANICAL TESTING LABORATORIES
[Mechanical Engineering] Washburn: 1st Floor
Experimental mechanical testing facilities are available for teaching and research related to mechanical properties and deformation of metals, ceramics, and composite materials. Equipment available includes:
• Two high temperature and three room temperature environmental chambers, and furnaces.
• An Instron Computerized Tensile Tester for high accuracy, low load testing of ceramic materials.
• Two 55 kip computer-controlled Servo-Hydraulic Tension-Compression Systems with supportive grips, environmental chambers, and furnaces.
• Two high temperature and three room temperature stress-rupture systems.

Nuclear Magnetic Resonance Imaging Facility
A Nuclear Magnetic Resonance (NMR) Imaging facility is located at the Central Massachusetts Magnetic Imaging Center (CMMIC) and is part of a joint research program between the Biomedical Engineering Department and the Department of Radiology at UMass Memorial Health Care. This facility houses a General Electric (GE) 2.0 Tesla (T) imaging spectrometer as well as a chemistry/electron-ics laboratory for sample preparation and radio frequency coil research. In addition to the 2.0 T instrument, two GE 1.5 T clinical imaging instruments are also available at CMMIC for suitable research projects.

NUCLEAR REACTOR FACILITY
[Mechanical Engineering] Washburn: 1st Floor
The WPI Nuclear Reactor Facility, licensed to operate at 10 kw of thermal power is used primarily to support the undergraduate nuclear program while providing service to other undergraduate and graduate programs, to campus-wide research activities, and to external educational activities.

The flexibility of the open pool design allows full access to the reactor core so that a wide variety of experiments can be performed, giving the student a convenient means of observing and measuring critical reactor phenomena. Instrumentation is also available in the Facility to support a variety of nuclear measurements, including:
• use of short- and long-lived isotopic sources,
• neutron and gamma-ray irradiation,
• neutron activation analysis and gamma-ray spectroscopy,
• use of computer-based nuclear techniques,
• alpha and beta particle analysis,
• use of portable radiation monitors, and
• environmental monitoring

Operations of the reactor and within the facility are conducted under the supervision of staff licensed by the Nuclear Regulatory Commission (NRC) and reviewed by the campus Radiation, Health and Safeguards Committee. Qualifying students have the opportunity to earn an NRC operator’s license for the WPI Reactor.

OPTICAL AND ELECTRON MICROSCOPy LABORATORIES
[Mechanical Engineering] Washburn: 2nd Floor
Two scanning electron microscopes (SEM), an analytical scanning transmission (AEM) electron microscope, optical reflection and transmission microscopes, and supporting sample preparation and photographic equipment are the major facilities available for microstructural analysis. SEM’s are available equipped with an Energy Dispersive X-ray (EDX) Analyzer, or equipped with stage-automated digital image analysis, a light element Quantum X-ray detector with a KeVex Delta system and a wavelength dispersive X-ray analyzer. The AEM is equipped with KeVex EDX system. These facilities are used primarily for microstructural analysis and determination of crystal structures of fine phases present in metals and ceramics.

POWER SYSTEMS LABORATORY
Atwater Kent
The Power Systems Laboratory in the Electrical and Computer Engineering Department has been established for simulation of a large variety of linear, nonlinear and time-varying loads, including thyristor-controlled loads. The laboratory contains transducers and lab instrumentation to support measurements over a wide range of voltages, currents, and frequencies. IBM-PC compatible computer equipment and A/D interfaces are available for real-time data acquisition and processing.
The Power Systems Laboratory has the basic facilities for electromechanical energy conversion study, including sets of induction/synchronous/dc machines coupled together. A large variety of dc and ac supplies, phase shifters, transformers and capacitive, inductive and resistive loads are available.

TOPOGRAPHIC RESEARCH AND ANALYSIS LABORATORY (TRAL)

[Mechanical Engineering] Washburn 2nd Floor
TRAL is dedicated to supporting product and process design by advancing the understanding of surface topographies (i.e.; roughness) and the processes which make them. Topographic characterization methods are developed for the reduction of large topographic data sets, such as those acquired by atomic probe microscopy, confocal microscopy, scanning interferometric microscopes, and conventional profilers. TRAL has: a scanning laser profiler, a scatterometer (ARS), and a portable Hommel profiler. In addition TRAL has access to AFMs and other equipment through collaborations in the US and Europe. TRAL also has the use of sophisticated analysis software which employs fractal geometry principles.

ULTRASOUND RESEARCH LABORATORIES

Atwater Kent
The Ultrasound Laboratory facilities in the Electrical and Computer Engineering Department are set up for performing basic ultrasound experiments in the areas of non-destructive testing and medical ultrasound diagnosis. The facilities are distributed over two separate laboratory areas and contain two Testech scanning tanks for ultrasound measurements, a HP 3000/series 845 workstation, several PC systems, ultrasound pulser-receiver equipment, a high speed digitizer, frequency synthesizers, arbitrary function generator, and various modern test equipment.

VHDL/VLSI DESIGN LABORATORY

Atwater Kent
The VHDL/VLSI Design Facilities in the Electrical and Computer Engineering Department are used for both undergraduate and graduate teaching, projects and research on the BS, MS, and Ph.D. levels.

The VHDL/VLSI Design Laboratory includes a variety of PCs and Unix workstations.

A large number of design and simulation tools are available. The integrated circuits are being fabricated through MOSIS.

VIBRATIONS/CONTROL/DYNAMICS LABORATORY

[Mechanical Engineering] Higgins: Basement
The Vibrations Laboratory supports educational, project, and research activities in the areas of vibrations and controls. The equipment housed in this lab includes signal analyzers, a 100-lb. shaker table, and computational hardware and software for various vibrations and controls applications.

VISUALIZATION AND IMAGE SCIENCE LABORATORY

Fuller
The VIS Laboratory is used for research in visualization, graphics, image processing, and computer vision. Current projects include large-scale multivariate data visualization, volume visualization, multiple object recognition, and model-based vision. The Lab contains an SGI Origin server, a Pentium 2 server, several SGI workstations (an Octane, 2 O2’s, an Indy, and an Indigo 2), and a Pentium 2 PC.

X-RAY DIFFRACTION LABORATORY

[Mechanical Engineering] Washburn: 2nd Floor
Two fully-automated and computerized x-ray diffractometers are available for teaching and research. In addition, a variety of software has been developed to utilize these instruments effectively. Currently, background modeling, peak searching, and curve fitting with deconvolution, are in use for quantitative phase analysis and residual stress analysis. Search of the JCPDS Powder Diffraction File is available. A variety of x-ray cameras and goniometers are available along with the choice of x-ray tubes targets to provide a wide x-ray diffraction capability. Additional support software is shared with the Electron Microscopy Facility to generate diffraction patterns for any crystal system in any desired orientation.

MUSIC AND THEATER FACILITIES

COMPUTER MUSIC LABORATORIES

Alden Memorial: Lower Level
These laboratories support creative and research activity in a variety of music- and sound-related applications including real-time virtual orchestra design and production techniques. Using a Macintosh platform, the lab contains hardware and software for multi-track digital recording and editing, signal processing, algorithmic composition, sound synthesis, MIDI sequencing, music notation, and music programming.

GREAT HALL OF ALDEN

Alden Memorial: 1st Floor
The Great Hall is used for major productions in Theatre and Music. It is the venue for the Masque Theatre performances. The Hall is sometimes used, in addition, for festive and gala campus functions.

GREEN ROOM

Alden Memorial: 1st Floor
Alden Hall houses many of the theatre activities at WPI, both academic and extra-curricular. The Green Room serves as the laboratory for Department of Humanities and Arts, Division of Drama Theatre Performance projects and Sufficiencies. The Masque office on the second floor centralizes activities of the student drama club, one of WPI’s largest organizations. The sub-basement contains the scene shop and props-storage area and also holds a major work room for Lens and Lights. Students interested in theatre performance and Lens and Lights activities have many resources in Alden Hall.
SPAULDING RECITAL HALL AND OTHER ROOMS FOR REHEARSAL AND PERFORMANCE

Alden Memorial: Lower Level

Alden Center for the Performing Arts houses the Spaulding Recital Hall, Perreault Chamber Rehearsal Room, the Janet Earle Choral Rehearsal Room, three practice rooms, and the Knight Lecture Room. Available for practice are Steinway grand pianos and the Three Manual Aeolian-Skinner pipe organ in the main Concert Hall. There are three concert grand pianos for recitals, ensemble work and concerts. WPI has some instruments that can be made available to students upon request; others can be rented.

OTHER MUSIC FACILITIES

Music facilities also include The Janet Earle Room, The Perreault Chamber Rehearsal Room, the music classroom, practice rooms, computer music labs and storage facilities.

GEORGE C. GORDON LIBRARY

The George C. Gordon Library invites all WPI students to take advantage of the services and resources that the library offers. The library is open over one hundred hours each week during the academic year and offers a comfortable atmosphere for study or relaxation.

The library’s home page on the World Wide Web (http://www.wpi.edu/+library) is the focal point for library resources and services. The library catalog; electronic full-text journals; bibliographic databases and indexes; catalogs of remote libraries; and many other reference resources are available to students.

The library collection supports the curriculum and research needs of the WPI community. Currently the library holds over 360,000 volumes and subscribes to over 1,400 print and electronic periodicals. The library collection also includes undergraduate project reports, graduate theses and dissertations, the WPI archives, and the special collections, most notably the Robert Fellman Dickens Collection. Library materials come in a variety of formats—print, audio, video, and digital. In addition to the many academic resources, the library also maintains a collection of popular books for leisure reading.

WPI students have access to the collections of other libraries in the Worcester area, and they can borrow books directly from the libraries at Anna Maria College, Assumption College, Becker College, Clark University, College of the Holy Cross, University of Massachusetts Medical Center, and Worcester State College. Students also can request materials not held in Gordon Library from other libraries through the interlibrary loan office and document delivery service.

Students will find that the Gordon Library staff is both knowledgeable in the use of library resources and ready to assist them with their information needs. The Reference Department helps students with research problems and questions; offers library instruction and orientation sessions; and provides computerized literature searching. Members of the staff will be happy to provide students with additional information about library services and resources.

INSTRUCTIONAL MEDIA CENTER

The main office of the Instructional Media Center (IMC) is located in the southwest corner on the 1st floor of Fuller Laboratories. The IMC provides a wide range of educational media support services for students, faculty and staff, and acts as the central distribution point for most of the audio/visual equipment on campus. Audio/visual equipment can be reserved and signed out for a short period of time to support educational needs. Equipment loans are for valid WPI projects and classes only, and are not for personal use. The IMC’s inventory of loan-out equipment includes: laptop PC’s, video/data projection systems, 35mm carousel projectors, overhead projectors, 16mm film projectors, audio recorders, microphones, small and large screens, portable video recorders, television sets, VCRs, TV/VCR combination units, film and digital cameras, tripods, and other miscellaneous items such as extension cords, batteries, cables, headphones, etc.

Through the generosity of the Class of 1956, an extensive graphic arts/multimedia production facility is also available in the multimedia resource lab located in Fuller Laboratories, Room B24. The staff in the multimedia resource lab designs and produces a multitude of presentation materials such as overhead transparencies, 35mm slides and multimedia applications that incorporate sound, digital images and animation. Students, faculty and staff have the option of designing their own material with or without the assistance of IMC staff.

A state-of-the-art instructional television classroom/studio combination and two adjacent control rooms are used for the production and playback of videotapes and for the delivery of WPI’s distance learning program—the Advanced Distance Learning Network. Persons wishing to make a videotape in support of any educational activity can obtain professional assistance from the IMC (advanced notice is required). Videotape production costs are usually covered by the IMC. On-location productions using portable equipment can also be arranged, but require additional preparation and planning.

The headend of the WPI cable TV network (WPIC TV) is also located in the IMC. Announcements pertaining to campus events can be shown on the WPIC-TV Video Bulletin Board (submission forms can be obtained from any member of the IMC staff). In addition, the IMC operates and maintains WPI’s satellite receiver, capable of receiving both Ku and C-band transmissions, and WPI’s interactive videoconferencing equipment.

STUDENT DEVELOPMENT AND COUNSELING CENTER

The WPI Student Development and Counseling Center (SDCC) provides a wide range of services that are FREE of charge to all students enrolled in classes at WPI. The primary purpose of the SDCC is to provide counseling, educational programming and training, referral, and crisis intervention services to the entire WPI student community focusing on 1) assisting students in their full and complete development as they go through the process of becoming adults so that they may achieve greater levels of personal, academic, and professional success and 2) as-
sisting students in becoming aware of, and effective in, their roles, relationships, and responsibilities as members of an ever burgeoning global society. The professional staff are trained to help students deal with a variety of issues including:

Situational Problems— poor academic performance; managing stress; time management; relationships with significant others; divorce or other family problems; feelings of loneliness, anger, anxiety, confusion, depression; loss; discrimination; harassment; alcohol or other substance problems; sleep disturbances; medical/physical conditions; learning disabilities.

Crisis-Related Problems— physical and/or sexual assault; impulse control problems; suicidal thoughts or behaviors; traumatizing experiences such as date rape, academic setbacks, or the loss of a loved one.

Developmental Issues— developing self-esteem; establishing personal and/or gender identity; helping to define sexual orientation; managing stress from earlier traumatic events; exploring personal and professional goals.

The SDCC staff can also provide referral services for psychiatric evaluation, psychological and learning disability assessment, or other treatment.

The services of the SDCC are confidential. The mental health professionals and support staff are highly trained and sensitive to students’ privacy and personal concerns.

The SDCC is located at West Street House, 157 West Street, near the corner of Institute Road. Appointments may be made during the academic year (A through E terms) in person or by calling (508) 831-5540. Office hours are 8:30 a.m. to 5:00 p.m. Monday-Friday (8:00 a.m. to 4:00 p.m. June to mid-August).

MAJOR SELECTION PROGRAM, A DIVISION OF THE CAREER DEVELOPMENT CENTER

Choosing an academic major is one of the most important decisions facing college students. It may also be the one made with the least amount of information and planning.

Through the Career Development Center, WPI offers an innovative program to help students make academic decisions, which will lead to career success — the Major Selection Program. Working with Faculty and the Academic Advising Office, the MSP assists students to get a better perspective on the full range of majors and related careers available to WPI students.

One component of the MSP is the non-credit seminar in A-term. During this seminar, students take various self-assessment tests, which provide information on how personality, career interests and values relate to various career options. Through the research of careers and company visits to see first hand “Professionals-in-Action,” students identify the skills needed to become successful in a variety of areas. Discussions with faculty and upper class students assist students in developing an academic plan, which meets the requirements of their eventual career goal. Additional MSP components include individual counseling, a network of peer advisors, and access to the career resource library.

The MSP is located in the lower level of the Project Center. Appointments may be made in person or by calling 831-5260, or at msp@wpi.edu. Office hours are 8:30 a.m. - 5:00 p.m.

M*A*S*H (MATH AND SCIENCE HELP) PROGRAM

M*A*S*H is an academic support program for first-year students in mathematics and science courses. Offered to all students enrolled in a supported course, M*A*S*H provides assistance in regularly-scheduled study sessions beginning the first week of the term.

M*A*S*H review sessions are offered for a limited number of courses which students and faculty have identified as difficult. These courses may have heavy homework assignments or they may require understanding of new and difficult concepts. Whatever the reason, some courses are more challenging than others. M*A*S*H helps students meet that challenge.

Each study group is guided by a M*A*S*H leader, an undergraduate student who has taken the course before and who, therefore, understands the course material and what the instructor expects. M*A*S*H leaders attend all class lectures, take notes, complete assigned readings and other assignments, and conduct three or four 50-minute M*A*S*H sessions each week. By attending class and demonstrating effective student behavior, M*A*S*H leaders can assist students with the language of the discipline, the integration of lecture and readings, and the development of good study habits.

Through the M*A*S*H program, students become actively involved with the content material in a supportive environment. Studies show students who attend M*A*S*H sessions regularly earn higher grades than students electing not to participate. But even more important, M*A*S*H participants master new concepts, learn to put ideas into perspective, and develop a better way to study. M*A*S*H is offered by the Office of Academic Advising.

ACADEMIC RESOURCES CENTER

WPI's Academic Resources Center (ARC) provides academic support services that are designed to enrich and enhance the learning experience of all WPI undergraduate students. Its student-based collaborative learning environment offers individualized assistance in a variety of subjects, as well as a comprehensive peer tutoring program, seminars and workshops.

Students may obtain individual counseling in such areas as learning styles, effective study strategies, problem solving and critical thinking skills, and time management. Appointments may be set up with staff members to develop individualized Academic Success Plans which help students set their academic goals, discover their learning strengths and weaknesses, and design the appropriate learning and study strategies that work best for them.

Academic Success Seminars assist students in developing better study habits and in working more effectively. Students can learn how to improve their motivation, overcome procrastination, improve time management, overcome test anxiety, and enhance such academic skills as note taking, concentration, memory, critical thinking and
test taking. Students may sign up for Academic Success Seminars and receive seminar updates via e-mail, or they may call the ARC to register.

Periodically, students may find that they need some individual assistance with a particular subject or topic. The ARC peer tutors, who are certified by the College of Reading and Learning Association, help students one-on-one in a variety of academic subjects. Appointments are recommended, although tutors are available on a walk-in basis.

Disabilities services are also available and, at the students’ request, the ARC director will act as a liaison between students and faculty in coordinating classroom accommodations. Students may contact the ARC director for further information on these services.

The Academic Resources Center is located in Salisbury Labs, Room 134. The hours of the center are 8:00 a.m.-4:30 p.m., Monday through Friday. Students may drop by the Center or call (508) 831-5281 for an appointment.

WRITING WORKSHOP A Division of the Center for Communication Across The Curriculum (CCAC)
The Writing Workshop offers all WPI students tutorial assistance on writing of any type: course assignments, project work, oral presentations, laboratory reports, proposals, resumes, and letters of application. The workshop is directed by a member of the Humanities and Arts Department faculty and staffed by undergraduate peer tutors trained in a special course on tutoring writing. Students may be referred to the Workshop by faculty, or students may make appointments on their own initiative. The workshop is open according to posted schedules, and its tutorial services are available at no cost.

For more information, visit the Writing Workshop in the Project Center.

WRITING COURSES AND ADVISORS
For information on WPI’s writing programs, see Humanities and Arts faculty as follows:

Students for whom English is the native language can consult Prof. J. Trimbur (39 Dean St., Room 258) about these programs.

The WPI advisor for undergraduates whose native language is not English is Prof. P. Dunn (Salisbury Laboratories 26).

WORLD WIDE WEB
The WPI World Wide Web server is the campus information system. It contains a great deal of useful information about people and programs at the university, and is updated frequently. In addition, by using the Web, students gain access to a vast universe of information on any subject imaginable. This is why the web is such a useful research tool for both faculty and students.

WPI’s web address, or URL, is: www.wpi.edu. Questions about WPI’s website should be directed to the Webmasters (webmaster@wpi.edu). The WPI Homepage includes the following major categories:
THE WPI PLAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPI Degree Requirements</td>
<td>20</td>
</tr>
<tr>
<td>The Planning Process</td>
<td>21</td>
</tr>
<tr>
<td>Academic Advising</td>
<td>22</td>
</tr>
<tr>
<td>Major Areas of Study</td>
<td>22</td>
</tr>
<tr>
<td>Concentrations</td>
<td>23</td>
</tr>
<tr>
<td>Minors</td>
<td>24</td>
</tr>
<tr>
<td>Double Majors</td>
<td>25</td>
</tr>
<tr>
<td>Minimum Distribution Requirements</td>
<td>26</td>
</tr>
<tr>
<td>For Students</td>
<td></td>
</tr>
<tr>
<td>Courses Qualifying For Engineering</td>
<td></td>
</tr>
<tr>
<td>Distribution Areas</td>
<td>32</td>
</tr>
<tr>
<td>Projects</td>
<td>33</td>
</tr>
<tr>
<td>Projects Program</td>
<td>35</td>
</tr>
<tr>
<td>Project Centers</td>
<td>35</td>
</tr>
<tr>
<td>The Major Qualifying Project</td>
<td>36</td>
</tr>
<tr>
<td>The Interactive Qualifying Project</td>
<td>37</td>
</tr>
<tr>
<td>Residential Project Programs</td>
<td>45</td>
</tr>
<tr>
<td>On-Campus IQP Programs</td>
<td>50</td>
</tr>
<tr>
<td>Awards and Scholarships</td>
<td>50</td>
</tr>
<tr>
<td>The Sufficiency</td>
<td>51</td>
</tr>
<tr>
<td>The Social Science Requirement</td>
<td>57</td>
</tr>
<tr>
<td>Awards and Prizes</td>
<td>58</td>
</tr>
</tbody>
</table>
WPI’s academic requirements are specifically designed to develop an overall educational experience which meets the goals of the college. Each requirement plays a supporting role as follows:

- To provide intellectual breadth and a better understanding of themselves, their cultures and their heritage, every WPI student must complete a Humanities and Arts Sufficiency Project;
- To provide an understanding of the priorities of other sectors of society, develop the ability to communicate effectively with disparate groups, organize and derive solutions to complex problems, and gain an awareness of the interrelationships between technology and people, every WPI student must complete an Interactive Qualifying Project (IQP);
- To provide a capstone experience in the professional discipline, to develop creativity, instill self-confidence and enhance the ability to communicate ideas and synthesize fundamental concepts, every student must complete a Major Qualifying Project (MQP);
- To provide for learning through an academic program with fabric and course balance while encouraging individual student choices within that framework, every student must fulfill Distribution Requirements.

WPI TERMS AND CREDIT UNITS
The Bachelor of Science degree from WPI normally is based upon a residency at WPI of 16 terms. WPI operates on a quarterly system with four seven-week terms, two in the autumn semester (Terms A and B) and two in the spring semester (Terms C and D). A seven-week summer session, Term E, is also available. The normal academic load for each term is defined as one unit of work, usually divided among three courses or projects. Thus, the usual credit unit for courses or independent study/projects is 1/3 unit. Qualifying Projects, defined on pages 33-34, require one full unit of activity which may be concentrated into a single term (especially if conducted off-campus) or spread throughout an academic year. The degree will be awarded upon completion of the following:

DEGREE REQUIREMENTS
1. The Humanities and Arts Sufficiency Project (See page 51)
 Qualification by overall evaluation of two units of work in the area. Students majoring in a scientific or engineering field or in business management or the social sciences fulfill the requirement in a humanities and arts area. Students majoring in a humanities and arts area fulfill this requirement in a scientific or engineering area.

2. The Interactive Qualifying Project (See page 37)
 Successful completion of a qualifying project relating science and/or technology to society (the Interactive Qualifying Project, or IQP) representing at least one unit of credit in project or independent study work. The format of the documentation is to be in accordance with current WPI policy on such documentation.
 An IQP shall address a topic relating science and/or technology to society. In this context both “society” and “technology” should be construed as broadly as possible. Technology refers to the application of rational and efficient principles to a body of knowledge or to the control of space, matter and/or human beings. Thus, the IQP encompasses not only techniques of production embodied in tools and machines, but also advances in methods of social and economic organization, in managerial techniques, and in methods of analysis in science, mathematics, and engineering. Society refers not only to a grouping of individuals but also to the culture, values, laws, customs, and institutions shared by these individuals.

3. The Major Qualifying Project (See page 36)
 Successful completion of a qualifying project in the major area of study (the Major Qualifying Project, or MQP) representing at least one unit of credit in project or independent study work. The format of the documentation is to be in accordance with current WPI policy on such documentation.

4. Distribution Requirements (See pages 26)
 Satisfaction of published academic activity distribution requirements in or relating to the major area of study. These requirements total no more than ten units (including the MQP) and are specified by general topical subject area, not by specific courses. Completion of distribution requirements will be certified by the appropriate departmental or Interdisciplinary and Global Studies Division (IGSD) Program Review Committee (PRC), upon recommendation by the student’s academic advisor. For students desiring designation of a major area for which a determination regarding distribution requirements has not previously been made and published, a faculty committee will be appointed by the department head or IGSD dean to review and approve the student’s program of study.

5. Social Sciences (See page 57)
 Completion of 2/3 unit of work in the social sciences exclusive of qualifying project.

6. Residency Requirement
 A minimum of eight units must be completed satisfactorily in residence at WPI. (It is anticipated the normal residence at WPI will be 16 terms.)

7. Minimum Academic Credit
 The minimum academic credit required for the Bachelor of Science Degree is 15 units. Credit accumulated beyond the published distribution requirements shall be accomplished by the addition of “free elective” work.

8. Physical Education (See page 124)
 Qualification in physical education shall be established by completing 1/3 unit of course work (four terms) or its equivalent. Such an equivalent, for example, may be participation in club or varsity sports. No student may use any 1/12-unit PE courses beyond these four required 1/12 units to satisfy any other requirement.

*Degree Requirements No. 4 and No. 5 above, including the revised procedure for major area certification (see page 22-23), apply only to students entering WPI for the first time after May 1984. Requirement No. 7 applies only to those who matriculated after April 30, 1988.
PLANNING FOR PROFESSIONAL DEVELOPMENT

To prepare fully for the challenges of professional work and further education, during the normal 16 terms (i.e., four years) of residency, WPI students should make the most of the many important and exciting educational programs available under the Plan in addition to the formal degree requirements as stated above. Therefore, from the beginning of their education at WPI, all students should consider seriously the following key activities which can enrich the basic program (see page 22):

1. Courses or projects taken to prepare for the IQP.
2. Projects taken to explore new fields of interest.
3. Participation in one of WPI’s foreign exchange programs or international project centers.
4. Study in areas of management, economics, or law.
5. Expansion of project depth in the IQP or MQP areas.
6. Additional advanced courses in your own and related fields, including graduate courses.
7. Participation in the WPI B.S./M.S. program—an excellent gateway to the M.S. degree.
8. Special course work at a liberal arts college through the Worcester Consortium.
9. Exploration of that “other area” of science, computer science, or engineering that you always wondered about.
10. Double majors involving both technical and non-technical fields.
11. Special programs of study for Entrepreneurship.
12. Pursuit of a Minor in an area of interest.

The opportunities at WPI are extraordinary for those who wish to develop the full degree of professional depth and educational breadth which are the hallmarks of WPI’s education.

Students are strongly encouraged to discuss the advantages of graduate study with their departmental advisors in the sophomore, junior, and senior years. Excellent opportunities exist to integrate upper level courses with graduate study at WPI through the WPI combined B.S./M.S. program described on page 211.

THE PLANNING PROCESS

At WPI, students, with the aid of their advisors, structure their own academic programs within the guidelines of the program distribution requirements. Thus, examples of specific programs presented in this catalog do not have to be followed literally. There can be as many different individual programs as there are students, provided the distribution requirements designated for that program are followed.

An undergraduate program should avoid premature over-specialization. Students must obtain a firm, rigorous understanding of the fundamental concepts of their disciplines. An acquaintance with an aspect of state-of-the-art technology is often best achieved through the MQP. Concentrating too soon on changing technological specialities will deprive students of the broad background necessary to educate themselves in new areas as they emerge. Students in engineering, for example, must obtain a firm grounding in mathematics and science, as well as the engineering sciences. Some study in at least one other area of engineering outside the major field is highly valuable for professional practice.

The IQP should be integrated carefully with your overall program. Establish your plans early to take advantage of exciting opportunities WPI offers, at home or abroad. (IQP and exchange opportunities are discussed annually in the fall.) Information on programs can come from many sources: advisors, other faculty, other students, professionals in the field. As soon as possible in the first year, students will discuss their academic goals with their advisor and plan a general academic program for their entire residence at WPI. If changes in details or even major goals occur, students can integrate them into a cohesive educational pattern which can maximize WPI’s unique program. As students mature, their confidence about making decisions for their own education will grow, too. Indeed, accepting responsibility for program planning is a major and exciting educational effort. Students consult with their advisors, but the final responsibility for program construction remains with each student.

Through courses and independent studies in the first two years, students should sample, explore, and learn the basic concepts of the disciplines necessary to their academic goals. This exploration and sampling will provide, first, a base of knowledge to build upon for further learning; and second, an insight into their basic interests for educational development.

In the latter portion of the academic program, students have the opportunity as they mature to explore, in some depth, specific areas within their disciplinary interests. These experiences should develop ability in self-learning and should involve a significant scholarly effort. Students should strive to learn how to educate themselves from a base of fundamental concepts so that they can develop in new intellectual areas throughout their lifetime.

PROFESSIONALLY ACCREDITED PROGRAMS

WPI is accredited as an institution by the New England Association of Schools and Colleges. In addition, six majors at WPI also carry the additional professional accreditation of the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET). These majors are civil engineering, chemical engineering, electrical engineering, industrial engineering, mechanical engineering, and manufacturing engineering. Please note that some departments bearing those particular names may also grant designated majors through their programs that are not ABET accredited (e.g., Sanitary Engineering). The titles of majors are carried on the students’ transcripts and have a bearing on engineering licensing and other professional activities.
THE PLANNING PROCESS

Programs not in civil engineering, mechanical engineering, electrical engineering, industrial engineering, chemical engineering, and manufacturing engineering are not ABET accredited.

The program distribution requirements reflect the ABET guidelines for these programs; see pages 26-32 for a review of these guidelines.

Projects and courses carry the same credit weight in establishing all distribution levels. Establishing some engineering breadth and technical literacy outside one's own field is an important element in establishing a versatile background for an unknown future.

ACADEMIC ADVISING

As a student, you have the responsibility of choosing your own program of studies. Your advisor can inform you of available academic alternatives. While your advisor will be willing to suggest specific study programs, he or she will not insist that you follow a particular course of study. By the end of the first semester, you and your advisor should agree upon a tentative four-year academic plan.

A successful advising program is based on a cooperative and understanding relationship between student and advisor. Consult your advisor regularly. Drop in and tell your advisor how the term is going. If you add or drop a course, you should notify your advisor. Many advisors post office hours during which they are available for conversation. If you cannot find your advisor in his or her office, leave a note with the appropriate departmental secretary, indicating your wish to make an appointment; in that note, indicate several times when you could meet with your advisor and also indicate the means by which you can be contacted. Above all, do not hesitate to call your advisor on campus, to ask questions, or to arrange for an appointment. Many faculty are also accessible through on-campus electronic mail.

FIRST-YEAR ADVISING

Upon acceptance at WPI, first-year students will be assigned an advisor from among a group of faculty members who have expressed an interest in working with first-year students. Many first-year students will not have advisors from their indicated major department until spring when they have declared their majors. This should not be a cause for concern. What is important is that you and your advisor work together as a team in the crucial first half-year, preparing a solid foundation for upperclass course work and assuring that you will progress both in completing degree requirements and meeting distribution requirements.

UPPERCLASS ADVISING

During December or January of the first year, most first-year students wish to be assigned to a new advisor in their major areas of study. Forms to change advisors can be obtained from the office of the Director of Academic Advising at any time during the academic year. First-year students who wish to retain the original advisor may do so.

The determination of an appropriate four-year program requires considerable thought and information. Not only your advisor but also departmental consultants, the Projects Office, and the consultants in the Humanities and Arts Department can provide you with assistance in planning for both qualifying projects and a Sufficiency area.

MAJOR AREAS OF STUDY

Guidelines for the construction of the most common major programs are given alphabetically by area in the “Department and Program Descriptions” section beginning on page 61. The exact program of study for any student, however, is developed by the student with the aid of an advisor.

Please note that only areas of study which are accredited at WPI by the Accreditation Board for Engineering and Technology (ABET) are civil engineering, chemical engineering, electrical engineering, mechanical engineering, manufacturing engineering, or subareas within those disciplines where appropriate as listed below. For further discussion of accredited degrees, see “Professionally Accredited Programs” on page 21.

The Chemistry Department and its program at WPI are approved by the American Chemical Society for a major in chemistry. Those chemistry majors who complete a program satisfying the guidelines established by the American Chemical Society are certified to that organization as having received an undergraduate professional education in chemistry.

The major designated as “Computer Science” is the only program accredited by the Computing Sciences Accreditation Board.
CONCENTRATIONS

DEFINITION:
A Concentration is an option associated with a Major which provides recognition for focused and coordinated academic work either within the Major or within an area of study closely related to the Major.

RULES:
1. All Concentrations require completion of two units of integrated academic study plus an MQP with a topic and content appropriate to the given Concentration.
2. Concentrations deemed to belong exclusively or primarily within the stated Major must be accommodated within the distribution requirements of that Major.
3. Concentrations deemed to have a substantial interdisciplinary nature can exceed the normal 10-unit allotment of the Major by as much as 1 unit, provided that the additional requirements do not include or permit academic work designated by the Major prefix or coursework normally taken to satisfy the Major’s portion of the distribution requirements. Furthermore, Concentrations of an interdisciplinary nature are permitted to use up to 1 unit of the academic program beyond the distribution requirements of the Major, including the IQP, Sufficiency, Social Science requirement, and Free Electives, as deemed appropriate.

Applied Mathematics (MA)
Actuarial Mathematics (MA)
Biochemistry (CH)
Biology (BB)
Biomedical Engineering
Biomedical Sciences (IGSD)
Biotechnology (BB)
Chemical Engineering (accredited by ABET)
Chemical Engineering with Biomedical Interests
Chemistry (certified by the American Chemical Society)
Civil Engineering (accredited by ABET)
Computer Science (accredited by the Computing Sciences Accreditation Board)
Computer Science with Biomedical Interests
Construction Management (CE)
Economics and Technology (SSPS)
Electrical Engineering (accredited by ABET)
Areas within the EE major:
 - Aerospace Systems
 - Communication and Signal Analysis
 - Computer Engineering
 - Electromagnetics and Microwaves
 - Electronics Engineering
 - Microelectronics
 - Power Systems Engineering
 - Systems Engineering
Electrical Engineering with Biomedical Interests
Engineering Physics (PH)
Engineering Science (IGSD)
Environmental Studies (IGSD)
Fire Protection Engineering*
Industrial Engineering (accredited by ABET) (MG)
Interdisciplinary (by arrangement)
Liberal Arts Majors in:
 - Economics (SSPS)
 - English (HU)
 - History (HU)
 - Humanities/Science or Technology (HU)
 - Music (HU)
 - Philosophy and Religion (HU)
 - Social Science/Technology (SSPS)
Management
Management Engineering (MG)
Management Information Systems (MG)
Manufacturing Engineering (ME; accredited by ABET)
Materials Engineering* (ME)
Mathematical Sciences
Mechanical Engineering (accredited by ABET)
 Concentrations in:
 - Aerospace
 - Biomechanical
 - Engineering Mechanics
 - Mechanical Design
 - Manufacturing
 - Materials Science
 - Nuclear
 - Thermal-Fluids
Nuclear Science* (IGSD)
Operations Research (MA)
Physics
Statistics/Probability (MA)
Structural and Geotechnical Engineering (CE)
System Dynamics (SSPS)
Technical or Professional Writing (HU or IGSD)
Transportation Systems (CE)

*Usually combined with MS major programs.

Programs for students interested in medicine, law or pre-college education can be readily developed from many of the above majors.

Interdisciplinary (individually-designed) majors (ID) may also be developed; see Interdisciplinary Programs, page 95.

WPI undergraduate diplomas designate “Bachelor of Science” for all students. The transcript will list the student’s major. If a specialization was completed, this will also be included on the transcript. For example, an entry of “Electrical Engineering with Biomedical Interests” could be made for a student whose course spectrum and qualifying projects substantiate that orientation.

The number of majors associated with a single WPI Bachelor of Science degree is limited to two.
4. The requirements of the Concentration must be designed to offer choices for the student within the Major area and, if relevant, outside the distribution requirements of the Major; however, the Concentration requirements must not preclude meeting the normal distribution requirements for the Major.

5. Rules and guidelines for each Concentration will be formulated by the faculty associated with the governing Major, and must be reviewed by the Committee on Academic Operations (CAO) and subsequently approved by the Faculty. CAO is empowered to rule on whether a proposed Concentration is disciplinary or interdisciplinary.

6. An individual program of study leading to a Major with a Concentration will be planned by a student in consultation with his/her academic advisor. The student’s intention to pursue a Concentration will be declared by application to the appropriate Program Review Committee in accordance with that Committee’s schedule of deadlines. Application deadlines should be designed to enable Committee review and communication of decisions to students at a sufficiently early point that flexibility of schedule still exists. Extenuating circumstances may be considered at the discretion of the Program Review Committee.

7. Concentrations and minors are additional degree designations. Any credit earned for an additional degree designation must not overlap with credit earned for another additional degree designation by more than one unit. Also, no credit-bearing activity may be triple-counted towards degree designations or degree requirements.

Listings of Concentrations may be found in the “Department and Program Descriptions” section beginning on page 61.

MINORS

DEFINITION:
A Minor is a thematically-related set of academic activities leading to a degree designation in addition to but separate from that granted by the Major. A Minor should be available to students of any Major, with the exception of a Minor which overlaps with a Major area to such an extent that it is not sufficiently distinct from that Major. The Committee on Academic Operations (CAO) is responsible for the review of proposed Minor Programs and decisions regarding allowed Major/Minor combinations.

RULES:
1. A Minor requires completion of two or more units of thematically related activity. The concluding 1/3 unit of the Minor must be a capstone experience that marks completion of the Minor.

2. It is expected that Minor requirements will be structured so that all acceptable Major/Minor combinations can be accommodated within a normal 16 term framework.

3. A Minor may include any portion of the academic program, excluding the MQP and the final Type 5 IS/P of the Sufficiency. Academic activities used in satisfying the regular degree requirements may be double-counted toward meeting all but one unit of the Minor requirements, subject to the following restrictions:
 a. The first unit of double-counted work may include at most 1/3 unit of the IQP, 3/3 units of the Sufficiency (excluding the final Type 5 IS/P), or a combination thereof.
 b. At least one unit of the Minor, including the capstone activity, must be free elective choices.

4. The Program Review Committee for a Minor area will consist of faculty members designated by the sponsoring faculty members.

5. A Minor area must be proposed by a sponsoring group of faculty and must be defined by the purpose of achieving an educational goal beyond those apparent or implicit in the regular degree requirements. Student-initiated Minor Programs must be developed with the approval of a sponsoring group of faculty advisors. Each Minor Program must be reviewed by CAO for its individual merit and subsequently approved by the faculty.

6. Concentrations and minors are additional degree designations. Any credit earned for an additional degree designation must not overlap with credit earned for another additional degree designation by more than one unit. Also, no credit-bearing activity may be triple-counted towards degree designations or degree requirements.

Minors are described in the “Program Description” section of this catalog. Minors sponsored by a department are described following the department. Others are listed alphabetically by title. As of the printing of this catalog, the following Minors have been approved:

- Computer Science; Entrepreneurship; Foreign Language; International Studies; Law and Technology; Management; Management Information Systems; Music; Organizational Leadership; Physics; Social Sciences (Economics, Sociology, Political Science and Law, Psychology, System Dynamics).
An option for some students who wish to broaden their WPI experience is the completion of two distinct majors through the double major option. The choice to pursue a double major should be made early in a student’s career. The limit on the number of majors that a student may complete per degree is two.

Students are reminded that WPI offers only one undergraduate degree. Each graduating undergraduate student receives only one diploma, which reads “Bachelor of Science.” For double majors, the diploma may list both majors (in order of preference by the student), either major, or no major as indicated by the student.

The following modifications are made to the degree requirements for students who elect to pursue a double major:

1. **THE SUFFICIENCY.**

 If a major requires the completion of a humanities and arts sufficiency, satisfactory completion of an MQP in Humanities & Arts or International Studies shall satisfy the humanities and arts sufficiency requirement.

 If a major requires completion of a technical sufficiency, satisfactory completion of an MQP in a science, engineering, or mathematics discipline, shall satisfy the technical sufficiency requirement.

2. **THE INTERACTIVE QUALIFYING PROJECT.**

 If a major is in Social Science and Policy Studies, a single project bearing at least one unit credit may be used to satisfy both the MQP requirement for the SSPS major and the IQP requirement. In order to be used to satisfy both requirements, the combined social science MQP and IQP must meet the goals of both projects. It must be interactive in nature involving an aspect of technology, and must also be an application of social science knowledge and analytical techniques. In order to select a single project that satisfies both the goals of the MQP and the goals of the IQP, the decision to pursue a social science double major needs to be made fairly early in the student’s career.

3. **THE MAJOR QUALIFYING PROJECT.**

 At least one separate and distinct major qualifying project of at least one unit of work must be completed for each major.

4. **DISTRIBUTION REQUIREMENTS.**

 The distribution requirements for each major must be met, but requirements common to both majors only need to be satisfied once. Students pursuing multiple majors, concentrations, and/or minors should also consult the rule on Credit Overlap for Degree Designations and Requirements (page 193). The requirements for each individual major must be completed and certified by the Program Review Committee of the department offering that major.

 Some departments offer more than one major. A degree may not include more than one major course of study from the same department unless provided for in the list of exceptions below.

 Exceptions:
 - A student may major in Industrial Engineering and also in either Management, Management Engineering, or Management Information Systems.
 - A student may major in Chemistry and also in Biochemistry.
 - If a student wishes to complete two Interdisciplinary (Individually-Designed) Major Programs, the double major must be proposed in a single Educational Program Proposal which must be approved by the student’s Program Advisory Committee for each major. The Committees shall ensure that the majors are substantially non-overlapping.

OTHER PROVISIONS.

If a student’s double major includes an Interdisciplinary (Individually-Designed) Major Program, the double major must be described in the Educational Program Proposal for the Interdisciplinary Major.
The distribution requirements for students who have matriculated before May, 2000 (if different from the requirements printed below) are listed in the individual program descriptions beginning on page 61.

The normal period of residency at WPI is 16 terms. In addition to the WPI requirements applicable to all students (see page 20), distribution requirements apply to 10 units of study in specific areas as listed on the following pages:

ACTUARIAL MATHEMATICS

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mathematics (including MQP) (See notes 1-6).</td>
<td>7</td>
</tr>
<tr>
<td>2. Management (See note 7).</td>
<td>4/3</td>
</tr>
<tr>
<td>3. Additional courses or independent studies (except MS, PE courses, and other degree requirements) from any area to total 5/3 units (See note 8).</td>
<td>5/3</td>
</tr>
</tbody>
</table>

NOTES:

1. Must include MA 3255, MA 3831, and MA 3832 or their equivalents.
2. Must include two of the following: MA 2073, MA 2271, MA 2273, MA 2431, MA 2631, or their equivalents.
3. Must include three of the following: MA 3211, MA 3212, MA 4213, MA 4214, or their equivalents.
4. May not include independent studies directed toward Society of Actuaries exams.
5. May not include either MA 2201 or MA 2210.
6. May not include both MA 2631 and MA 3613.
7. Must include MG 2101 and MG 2200 or their equivalents.
8. Must include 2/3 units of computer science.

BIOCHEMISTRY

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mathematics and Physics (Note 1).</td>
<td>2</td>
</tr>
<tr>
<td>2. Chemistry (Note 2).</td>
<td>4-1/3</td>
</tr>
<tr>
<td>3. Biology (Note 3).</td>
<td>2</td>
</tr>
<tr>
<td>4. Other Physical or Computer Science (Note 4).</td>
<td>2/3</td>
</tr>
<tr>
<td>5. MQP.</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:

1. The mathematics in MA 1021-MA 1024 or the equivalent is recommended. The physics in PH 1110-PH 1120 or the equivalent is recommended.
2. These four-and-one-third units must include 4/3 units of general chemistry, one unit of organic chemistry (including 1/3 unit of laboratory), one unit of biochemistry, and one unit of physical and/or inorganic chemistry.
3. These two units must include 1/3 unit of cell biology, 1/3 unit of advanced work (3000 level or higher) in each of the following: microbial genetics, and recombinant DNA biochemistry, and 2/3 unit of laboratory.
4. Any course in the natural sciences (not used to satisfy another requirement) or in computer science may be used to satisfy this requirement.

BIOTECHNOLOGY

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mathematics and/or physics.</td>
<td>2</td>
</tr>
<tr>
<td>2. Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>3. Biology (see Note 1).</td>
<td>10/3</td>
</tr>
<tr>
<td>4. Lab Experience (see Note 2).</td>
<td>2/3</td>
</tr>
<tr>
<td>5. Biotechnology related courses (see Note 3)</td>
<td>1</td>
</tr>
<tr>
<td>6. MQP.</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:

1. Five or more of the courses must be at the 3000 or 4000 level.
2. Lab experience must be in Biology/Biotechnology courses, or research projects, at the 3000 or 4000 level, exclusive of MQP units.
3. Three courses, all from one non-Biology/Biotechnology department, which appear on the list of approved Biotechnology related courses. (See page 64.)
CHEMICAL ENGINEERING

Minimum Units
1. Mathematics and Basic Science (Notes 1, 2).
 4
2. Engineering Science and Design (Notes 3, 4).
 6
3. Advanced Chemistry (Note 5).
 2

NOTES:
1. Must include differential and integral calculus and differential equations.
2. Must include 2 courses in physics.
3. Must include 1 unit of MQP, 1/3 unit of capstone design experience (e.g. CM 4404), and at least 1/3 unit of engineering study outside the major. Courses used to satisfy this requirement must be at the 2000-level or above.
4. Must include at least 4 units from the following list of core chemical engineering courses: CM 2001, ES 3000 (or ES 3001), CM 2102, CM 2002, ES 3004, ES 3003, ES 3002, CM 3201, CM 3501, CM 4401, CM 4402, CM 4403, CM 4404, CM 4405.
5. All CH courses qualify except CH 1010, CH 1020, and CH 1030 which are basic science. Up to 1 unit of Advanced Chemistry may be double counted as both Advanced Chemistry and Basic Science. One course of Advanced Natural Science (2000 level and above BB, PH, GE) may be substituted for one Advanced Chemistry course.

CHEMISTRY

Minimum Units
1. Mathematics and physics.
 2-1/3
2. Chemistry.
 (Four units of chemistry must be above the level of general chemistry. A portion of these four units must include courses in experimental, inorganic, organic, and physical chemistry. At least 2/3 units of courses in chemistry must be at the 4000 level or higher.)
 4
3. Distributed among the MQP, the natural and physical sciences, computer science, mathematics, and engineering activities.
 3-2/3

CIVIL ENGINEERING

Minimum Units
1. Mathematics and Basic Science (Notes 1,2).
 4
2. Engineering Science and Design (including the MQP) (Notes 3,4,5,6).*
 6

NOTES:
1. Mathematics must include differential and integral calculus and differential equations.
2. Must include both chemistry and physics with a minimum of two courses in either.
3. A minimum of 4 units of work must be within the Civil Engineering area. All CE courses including the MQP, ES 2503, and ES 3004 are acceptable within the Civil Engineering area.
4. The curriculum must include at least one engineering science course outside the major discipline area. Courses acceptable to satisfy the requirement of outside-of-discipline course are those taught in other engineering departments. The course must be a 2000-level or above and cannot include ES 2501, ES 2502, ES 2503, and ES 3004.
5. All students are required to include an appropriate laboratory experience as part of their overall program. This experience can be met by the completion of two undergraduate CE lab courses, selected from among the following: CE 2020, CE 3024, CE 3026, CE 4046, and CE 4060. Alternately, an appropriate laboratory experience could also be accomplished by a student through careful planning of course and laboratory work and approval by petition through the Department Program Review Committee.
6. Must include 1/3 unit of Capstone Design Experience.
*Notes 3, 4, and 5 will apply to students matriculating at WPI after April, 1988. For students entering before April, 1988, Note 3 reads: “Must include at least one course outside of the major area.”

COMPUTER SCIENCE

Minimum Units
1. Computer Science (including the MQP) (Notes 1, 2).
 6
2. Mathematics (Note 2).
 7/3
3. Basic Science and/or Engineering Science (Notes 2, 3).
 5/3

NOTES:
1. a. Only computer science courses at the 2000-level or higher will count towards the computer science requirement.
 b. Must include at least 1/3 unit from each of the following areas:
 Systems (CS 3013, CS 4513, CS 4514, CS 4515), Theory and Languages (CS 3133, CS 4123, CS 4533), Design (CS 3041, CS 3733, CS 4233), and Social Implications of Computing (CS 3043, SS 2208). (If SS 2208 is used to satisfy this requirement, it does not count as part of the 6 units of CS.)
 c. At least 5/3 units of the Computer Science requirement must consist of 4000-level courses. These units can also be met by WPI graduate CS courses, with the exception of CS 501 and CS 507.
2. A cross-listed course may be counted toward only one of areas 1, 2, 3, above.
3. Courses satisfying the science requirement must come from the BB, BE, CE, CH, CM, EE, ES, GE, ME, NE, PH disciplines. At least three courses must come from BB, CH, GE, PH, where at least two courses are from one of these disciplines.
COMPUTERS WITH APPLICATIONS

Minimum Units
1. Computer Science (including the MQP) (Notes 1, 2). 16/3
2. Mathematics (Note 2). 7/3
3. Basic Science (Notes 2, 3). 2/3
4. Application Area (Notes 2, 4). 5/3

NOTES:
1. a. Only computer science courses at the 2000-level or higher will count towards the computer science requirement.
 b. Must include at least 1/3 unit from each of the following areas: Systems (CS 3013, CS 4513, CS 4514, CS 4515), Theory and Languages (CS 3133, CS 4123, CS 4533), Design (CS 3041, CS 3733, CS 4233), and Social Implications of Computing (CS 3043, SS 2208). (If SS 2208 is used to satisfy this requirement, it does not count as part of the 16/3 units of CS.)
 c. At least 5/3 units of the Computer Science requirement must consist of 4000-level courses.
 d. The MQP must involve the application of computer science concepts to the Application Area specified in Requirement 4.
2. A cross-listed course may be counted toward only one of areas 1, 2, 3, 4 above.
3. The two courses satisfying the science requirement must both come from one of the following disciplines: BB, CH, GE, PH.
4. This requirement is satisfied by a cohesive set of work from disciplines other than Computer Science. Work used for any other degree requirements cannot be used for the Application Area. At least 3/3 units must be course work at the 3000 level or higher. Independent Study/Project (ISP) work, if any, must be conducted under the supervision of a member of the faculty in that discipline.

ECONOMICS

Minimum Units
1. Economics (Note 1). 3
2. Economics and/or Management (Note 2). 1
3. Other Social Science. 1
4. Mathematics (Note 3). 2
5. Basic Science. 1
6. Electives. 1
7. MQP. 1

NOTES:
1. (a) Must include econometrics, systems analysis, industrial organization and intermediate level microeconomic and macroeconomic theory.
 (b) Must include (1) two courses in environmental economics, the economics of the medical care industry or advanced systems analysis or (2) two courses in fiscal and monetary economics.
2. Must include financial accounting and either financial management or engineering economy.
3. Must include statistics, and differential and integral calculus.
4. Courses must be in science or engineering with a concentration in one discipline.
5. The MQP may be in Economics or in the student’s technical field with the approval of the academic advisor and the departmental Program Review Committee.

ECONOMICS & TECHNOLOGY

Minimum Units (1 course = 1/3 unit)
1. Economics (Note 1). 3
2. Management (Note 2). 2/3
3. Other Social Science. 1
4. Basic Science. 2/3
5. Mathematics (Note 3). 5/3
6. Technical Electives (Note 4). 2
7. MQP (Note 5). 1

NOTES:
1. (a) Must include econometrics, systems analysis, industrial organization and intermediate level microeconomic and macroeconomic theory.
 (b) Must include (1) two courses in environmental economics, the economics of the medical care industry or advanced systems analysis or (2) two courses in fiscal and monetary economics.
2. Must include financial accounting and either financial management or engineering economy.
3. Must include statistics, and differential and integral calculus.
4. Courses must be in science or engineering with a concentration in one discipline.
5. The MQP may be in Economics or in the student’s technical field with the approval of the academic advisor and the departmental Program Review Committee.

ELECTRICAL ENGINEERING

Minimum Units
1. Mathematics and Basic Science (Notes 1, 2, 3, 4). 4
2. Engineering Science and Design (ES/D) (including the MQP) (Notes 5, 6, 7). 6

NOTES:
1. Basic Science courses have prefixes PH, CH, BB, and GE.
2. Mathematics must include differential and integral calculus and differential equations.
3. Must include at least 1/3 chemistry and 2/3 physics or 2/3 chemistry and 1/3 physics.
4. Must include at least 7/3 units of math.
5. The six units of Engineering Science and Design must include at least two courses outside the major area and may include as many as three. All three courses must be at the 2000-level or above. One course must have the prefix ES (other than ES 3011, ES 4012). The second course must have the prefix CS (other than CS 2022, CS 3043). If a third course is chosen that does not have the prefix EE, it must be selected from courses having the prefix BE, CE, CM, CS, (other than CS 2022, CS 3043), ES, FP, ME, or NE.
6. Must include at least 5 units within the Electrical and Computer Engineering area (including the MQP). All courses designated EE (except EE 3601) are applicable to these 5 units. Also, courses ES 3011, ES 4012, BE 4011, and BE 4201 are applicable to these 5 units.
7. Must include 1/3 unit of Capstone Design Experience. These distribution requirements in Electrical Engineering apply to all students matriculating at WPI after May, 2000. Students who matriculated prior to May, 2000, have the option of satisfying the distribution requirements in the catalog current at the time of their matriculation.
The demand for graduates with the background possessed by a WPI student with a double major in the Humanities and Arts is likely to increase. Many fields, including medicine, law, industry, theatre technology, commerce, and public service, will be open to those who have acquired both the skills of humanistic education and technical or managerial knowledge.

MINIMUM DISTRIBUTION REQUIREMENTS FOR STUDENTS

<table>
<thead>
<tr>
<th>ENVIRONMENTAL POLICY AND DEVELOPMENT</th>
<th>Minimum Units (Note 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SS & PS (Note 2)</td>
<td>12/3</td>
</tr>
<tr>
<td>2. Mathematics (Note 3)</td>
<td>5/3</td>
</tr>
<tr>
<td>3. Basic Science (Note 4)</td>
<td>2/3</td>
</tr>
<tr>
<td>4. Technical Concentration (Note 5)</td>
<td>2</td>
</tr>
<tr>
<td>5. Department Electives (Note 6)</td>
<td>2/3</td>
</tr>
<tr>
<td>6. MQP</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:
1. 1/3 unit = 1 course. 15 units are required for graduation.
2. Students must complete 5/3 units (5 courses) in one of three social science areas: (a) economics, (b) psychology/sociology, (c) political science (includes SS & PS courses in law and policy analysis) and 2/3 unit (2 courses) in each of the other two social science areas. The particular courses chosen must include six out of the following nine courses: A Psychological Perspective on Environmental Problem Solving, American Public Policy, Development Economics, Environmental Economics, International Environmental Policy, Introduction to Economic Systems, Legal Regulation of the Environment, Technical Expertise in Governmental Decision Making, and the Society-Technology Debate. Students must also complete three other social science courses (1 unit) of their choosing.
3. Must include both calculus and statistics.
4. Basic science courses must be selected from the disciplines of Physics, Chemistry, or Biology.
5. The technical concentration must include at least six thematically related courses in science, engineering or management that have been approved by the Department’s Program Review Committee.
6. Departmental electives must be selected from the areas of mathematics, basic science, social science, or the technical concentration.

<table>
<thead>
<tr>
<th>HUMANITIES AND ARTS</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Humanities and Arts (including MQP) (Note 1).</td>
<td>6</td>
</tr>
<tr>
<td>2. Electives (Note 2).</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTES:
1. Humanities and Arts majors may choose to complete 2 units of work and an MQP in one of the following areas of Concentration: History, Literature, Music, Philosophy, Religion, Drama/Theatre, Writing and Rhetoric, Art History/Architecture, German Studies, Hispanic Studies, American Studies, Environmental Studies, or Humanities Studies of Science and Technology.
2. May be from any area except Aerospace Studies, Military Science, or Physical Education. Courses used to satisfy other degree requirements (i.e. the IQP and the Sufficiency) may not be used to fulfill this requirement.

DOUBLE MAJOR IN HUMANITIES AND ARTS

Students may pursue a double major in Humanities and Arts and in an area of science, engineering, or management. To pursue the double major, a student must satisfy all of the degree requirements of the technical discipline including an MQP and Distribution Requirements. In addition, the double major in Humanities and Arts requires 6 units of studies in the Humanities and Arts, including the MQP. Students pursuing a double major one of which is Humanities and Arts are not required to complete a Sufficiency Program in Humanities and Arts, nor are they required to complete a second IQP. Students interested in pursuing this option should contact Prof. B. Addison, Humanities and Arts Department, for additional information.

<table>
<thead>
<tr>
<th>INDUSTRIAL ENGINEERING</th>
<th>Minimum Units (Management Department)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mathematics and Basic Science (Notes 1, 2)</td>
<td>4</td>
</tr>
<tr>
<td>2. Industrial Engineering Topics (including the MQP)</td>
<td>6 (Notes 3, 4)</td>
</tr>
</tbody>
</table>

NOTES:
1. Mathematics must include differential and integral calculus, ordinary differential equations, and 2/3 units in probability and statistics.
2. Basic Science must include both chemistry and physics, with a minimum of two courses in either.
3. Must include 1/3 unit of Capstone Design Experience.
4. Industrial Engineering Topics must include courses in the following three topic areas.
 a. 3 units of industrial engineering core courses, including 1/3 unit in each of the following 9 areas: engineering basics outside industrial engineering, deterministic operations research methods, process design, production planning and control, simulation, stochastic methods in operations research, information systems design, financial modeling and organizational science.
 b. 1 unit in Industrial Engineering electives. 3000/4000 level MG/IE courses and Operations Research courses in Mathematics qualify with the exception of courses in financial modeling and organizational science.
 c. 1 unit in technical electives. Industrial Engineering electives and any other Engineering Science/Design courses qualify.

INTERDISCIPLINARY

By individual arrangement; see pages 95-97.

<table>
<thead>
<tr>
<th>INTERNATIONAL STUDIES</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Core (Note 1)</td>
<td>1</td>
</tr>
<tr>
<td>International Fields (Note 2)</td>
<td>4</td>
</tr>
<tr>
<td>International Experience (Note 3)</td>
<td>0</td>
</tr>
<tr>
<td>Electives (Note 4)</td>
<td>4</td>
</tr>
<tr>
<td>MQP</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:
1. International Core: One course must be selected from each of these categories:
 a) An introductory course in international history, such as HI 1341 or HI 1313, HI 1321, HI 1322, HI 1323.
 b) A course in understanding cross-cultural differences, such as one of the following: HU 3411 Pro-Seminar in Global Perspectives, or SS 2406 Cross-Cultural Psychology; or SS 1202 Sociological Concepts and Comparative Analysis; or PY 2716 Philosophy of Difference.
 c) HU 4411 Senior Seminar in International Studies.
2. International Fields: Majors complete at least one unit of work in each of the following areas. They must also complete at least one additional unit of work in one of these areas, which will be considered their primary field.
 a) Historical Analysis. These include any courses in European history, world history, or American foreign policy.
b) Language, Literature, and Culture. These include any course in foreign languages, civilization, and literature offered at WPI or in the Consortium with the prior approval of the Program Review Committee; also courses approved by the Program Review Committee in Art History (e.g. AR 1111, AR 2111), English Literature (e.g. EN 2243, EN 3222), Music History (e.g. MU 2615), or Philosophy and Religion (e.g. RE 2721, RE 2724). Majors who designate Language, Literature, and Culture (LLC) as their primary field may not take courses in a second foreign language unless they have achieved 3000-level proficiency in the first. LLC designees should take most of their courses in a single discipline or in a coherent program approved by the Program Review Committee.

c) Social Sciences. These include international courses in the social sciences (e.g. SS 1320, SS 2105, SS 2125, SS 2312, SS 2406). Students may count courses taken for the two-course requirement in Social Sciences.

3. International Studies majors are required to have a study-abroad experience. (In very unusual cases exceptions may be made to this requirement but only with prior approval of the Director and Program Review Committee). This abroad experience may take the form of a project, exchange, or internship approved by the Program Review Committee. The study-abroad experience should be educational in nature and equivalent in length to at least one WPI term.

4. Electives may be from any area except Aerospace Studies, Military Science or Physical Education. Double-majors may count as electives courses taken for their other major. Majors who are not completing a double-major are required to complete a two-unit technical sufficiency in an area of science, engineering, or mathematics apart from these electives.

5. Management electives must include at least 1/3 unit of 3000/4000 level MG courses. The remaining 2/3 units specified in the requirement may be satisfied with courses from Mathematics, Basic Science, Computer Science, Management, or Social Science, but excluding courses MG 1250, and MG/IE 2850.

5. Courses may not be counted more than once in meeting the departmental distribution requirements. The total number of MG (and/or MG/IE) units may not exceed 50% of the total number of units earned for the degree.
Mechanical Engineering

<table>
<thead>
<tr>
<th>Course</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics and Basic Science (Notes 1, 2, 3)</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Science and Design (includes MQP) (Notes 3, 4, 5, 6, 7, 8, 9)</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes:
1. Must include a minimum of 5/3 units of mathematics, including differential and integral calculus and differential equations.
2. Must include a minimum of 1/3 unit in chemistry and 2/3 unit in physics, or 1/3 unit in physics and 2/3 unit in chemistry.
3. Must include an activity that involves basic matrix algebra and the solution of systems of linear equations, and an activity that involves data analysis and applied statistical methods.
4. Must include 1/3 unit in each of the following: electrical engineering, materials science, and mechanical engineering experimentation.
5. Must include at least one unit of ME and/or NE courses at the 4000-level.
6. May include 1000 level courses only if designated ES or ME.
7. Must include two stems of coherent course and/or project offerings as noted below in a and b.
 a. A minimum of one unit of work in thermofluids that includes the topics of thermodynamics, fluid mechanics and heat transfer, plus an activity that integrates thermofluid design.
 b. A minimum of one unit of work in mechanical systems that includes the topics of statics, dynamics, and stress analysis, plus an activity that integrates mechanical design.
8. Must include an activity which realizes (constructs) a devise or system.
9. Must include 1/3 unit of Capstone Design Experience.
 Items 3, 5, 7a integration, 7b integration, 8, 9 may all be “multiple-counted.”

Physics

<table>
<thead>
<tr>
<th>Course</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics (Note 1)</td>
<td>3</td>
</tr>
<tr>
<td>Physics (including the MQP; can include ES 3001) (Note 2)</td>
<td>5</td>
</tr>
<tr>
<td>Other subjects to be selected from mathematics, science, engineering, computer science, and management (Note 2)</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes:
1. Mathematics must include at least 2/3 unit of mathematics at the level of MA 3000 or higher.
2. Either item 2 or 3 must include 1/3 unit of PH 2600, PH 3600, or other laboratory course approved by the department Program Review Committee following petition by the student.

System Dynamics

<table>
<thead>
<tr>
<th>Course</th>
<th>Minimum Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Dynamics (Note 1)</td>
<td>5/3</td>
</tr>
<tr>
<td>Other Social Science (Note 2)</td>
<td>5/3</td>
</tr>
<tr>
<td>Management (Note 3)</td>
<td>2/3</td>
</tr>
<tr>
<td>Mathematics/basic sciences/engineering (Note 4)</td>
<td>8/3</td>
</tr>
<tr>
<td>Computer Science (Note 5)</td>
<td>2/3</td>
</tr>
<tr>
<td>Application Area (Note 6)</td>
<td>5/3</td>
</tr>
<tr>
<td>MQP</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
1. Only social science courses with a “5” in the second digit of the course number count toward the system dynamics requirement.
2. Must include microeconomics or macroeconomics, cognitive or social psychology, and public policy.
3. Must include organizational science.
4. Must include differential and integral calculus, differential equations, and numerical analysis.
5. CS1005 and CS2005 are recommended.
6. This requirement is satisfied by a cohesive set of work from the fields of social science, management, science, mathematics, computer science, or engineering as specified in the curriculum the guidelines for system dynamics major.
TECHNICAL, SCIENTIFIC, AND PROFESSIONAL COMMUNICATIONS Minimum Units
1. Scientific and/or technical concentration (Note 1) 6
2. Communication concentration (Note 2) 3
3. MQP 1

NOTES:
1. The student’s scientific and/or technical concentration must be a plan of study with a clear underlying rationale in mathematics, basic science, computer science, engineering, and/or management. Depending on the student’s intellectual interests and professional goals, the plan of study may lead to in depth mastery of an area of science or technology or it may provide the student with a broad overview.
2. The Communication concentration consists of 1 unit in each of 3 categories of courses. Courses taken to fulfill these distribution requirements will not include courses that fulfill other degree requirements, such as the Humanities and Arts Sufficiency and the Social Sciences requirement. Exceptions to this restriction, not to exceed 1 unit, must be approved by the student’s program review committee, and will be granted only under unusual circumstances.

A. Written communication (1 Unit)
 Recommended courses:
 EN 2211 Elements of Writing
 EN 3215 Genres of Science Writing
 EN 3216 Writing in the Professions
 RH 3011 Electronic Documents or equivalent writing courses or ISPs

B. Rhetoric and communication studies (1 Unit)
 Recommended courses:
 RH 3111 The Study of Writing
 RH 3112 Rhetorical Theory ISP or any of the courses listed in Category I not used to fulfill that requirement.

C. Electives (1 unit)
 The 1 unit of electives must be coherently defined and approved by the student’s program review committee. Students may draw on:
 Courses in science, technology, and culture studies (such as AR/ID 3150, CS 3041, CS 3043, EN 2252, HI 2331, HI 2332, HI 2333, HI 2334, HI 3331, SS 2207, SS 2208, or SS 2302);
 Philosophy and ethics courses (such as PY 2711, PY 2713, PY 2714, PY 2716, PY 2717, PY/RE 2731, PY/RE 3731);
 Foreign language courses;
 Management courses.

COURSES QUALIFYING FOR ENGINEERING DISTRIBUTION AREAS

Mathematics
All Courses designated “MA.”
 Advanced placement established by AP exam or through passing WPI advanced courses (see page 215) also qualify.

Basic Science
All courses designated “PH,” “CH,” “BB,” and GE 2341 and GE 3050.

Engineering Science/Design
The following courses may be applied to the “Engineering Science and Design” distribution requirement for each respective engineering major:
CE: All courses designated “CE” except part of CE 4024.* Also ES 2503 and ES 3004.
CM: All courses designated “CM.” Also ES 3000 (or ES 3001), ES 3002, ES 3003, ES 3004, and other courses approved by the Chemical Engineering Department. See page 65, and consult with your academic advisor for details.
EE: All courses designated “EE” except EE 3601. Also ES 3011, and ES 4012 may be included in the six-unit EE area distribution requirement.
ME: All courses designated “ME” and “NE.”

In addition, engineering majors selecting “Engineering Science/Design” courses from outside their major may choose appropriate activities from any of the following:
All courses designated ES, EE, CM, ME, NE.
All MG/IE courses listed above (for ME majors only).
All courses designated as CE except CE 3022 and part of CE 4024.
All courses designated as CS except CS 1001, CS 1005, and CS 3043.
(Engineering Science majors are restricted to these courses at the 2000-level or higher.)
All ABET programs require six units of Engineering Science and Design.
All graduate-level courses may be counted in the appropriate categories.
*Information on the estimated “Engineering Science” or “Design” content of courses is available through your advisor and in engineering department offices.
Project activity is an integral part of the educational experience for all students under the WPI Plan. The two types of qualifying projects are:

1. A project in the major field of study (the Major Qualifying Project, or MQP).
2. A project which relates technology and science to society or human needs (the Interactive Qualifying Project, or IQP).

Projects should be chosen in consultation with the student’s academic advisor and must be accepted by a project advisor before project registration can be completed. Many project opportunities come from off-campus organizations, and provide challenges to solve real-world problems and thus gain experience invaluable for seeking jobs and for professional practice. Students are encouraged to develop their own projects, to solicit support for their ideas from potentially interested faculty, and to form teams to pool resources and share points of view.

The Major Qualifying Project should focus on the synthesis of all previous study to solve problems or perform tasks in the major field with confidence, and communicate the results effectively.

The Interactive Qualifying Project should challenge students to relate social needs or concerns to specific issues raised by technological developments.

PAY AND CREDIT

The WPI Faculty approved the following project policies in 1973:

1. A student may receive pay for related work that is above and beyond the work clearly defined for academic credit for a project.
2. Wherever possible remuneration for this extra work will be paid by WPI to the student from funds directly obtained through grants from the company to the college.
3. Results obtained from paid or unpaid work performed while students are not registered for project credit at WPI may be used in projects only after consultation with the project advisor. When possible such consultation should take place before the work begins.
4. Students who wish to pursue project work off-campus for WPI credit can do only if 1) they are registered for that term at WPI, 2) their project advisors have established appropriate methods of supervising the off-campus work. Such supervision must make adequate provision for periodic review and advising.

RESOURCES - GETTING STARTED

Students are encouraged to avail themselves of the many resources and advice areas found in the Projects Program web page (www.wpi.edu/Academics/Projects).

In addition, personal advice can be provided by meeting with the Projects Administrator (Projects & Registrar’s Office–Boynton Hall) or the project coordinators listed on page 199.

AVAILABLE PROJECTS

Students may obtain information about new or ongoing projects from a variety of sources. Principal sources include discussions with other students, especially those currently involved in a project, the Projects Program web site, department offices, and the campus television station. Off-campus projects are discussed annually in the fall. In the spring, “Available Projects” on the Projects Program web site can be used as a directory of specific projects or as a source of ideas for developing your own projects. Some students will find a project listed which fits their needs and interests exactly. In other cases, the listing will serve to lead students to a faculty member with whom project involvement can be negotiated. The proposals in the Projects Program web page are updated periodically to provide an accurate listing of available projects.

PROJECT ADVISOR

Academic advisors can assist students in identifying a project. They are aware of the project interests of many other faculty members, and have a list of faculty interests which will enable a student to find a faculty member who can help to develop a project idea. Faculty associated with the Interdisciplinary and Global Studies Division (IGSD) are available to assist students in interdisciplinary and interactive projects. The Projects Office can also assist in finding an appropriate project advisor. See pages 200-201.

PROJECT PERFORMANCE

A student is normally expected to expend 15-17 hours per week on the average for each 1/3 unit of credit for project work, and expected achievement is based upon that commitment.

A project group, whether it involves one student or more, should have a minimum of one scheduled conference per week with the advisor(s). Additional time should be scheduled when the effort exceeds 1/3 unit per student or when more students are involved.

Students should be prepared to submit written project reports to the advisor each week. Students are also encouraged to complete a proposal at the beginning of the project activity to define the scope and timeline for completion of the effort. In addition, oral reports may be required as determined by the advisor. At the end of the project, a report must be prepared to the satisfaction of the project advisor. For projects sponsored by off-campus organizations, both a written and oral report for the sponsors is normally expected. All written qualifying project reports go on file in Gordon Library, for a period of five years.

QUALIFYING PROJECT DOCUMENTATION

In completing the qualifying project degree requirement, students must submit to their project advisors a final document of record. It is expected that the qualifying project documentation will, in most cases, consist of a written report only. In some cases, however, the project documentation may include, in addition to the written report, material in another medium or form, such as software, a video tape, a CD-Rom, or a publication. It is reasonable to expect that the scope of the written report in
such instances may be narrower than would be the case if the documentation were by written report only; for example, the objective of a project might be the preparation of a videotape to serve a special purpose, meet a specified need, record a singular event, etc. At the very least, however, the written report portion of the project documentation should provide the reader with a history of the student’s involvement with the project, its aims and objectives, its rationale, the role played in the project by the material in the other medium, and the conclusions reached and recommendations framed by the student. All additional forms of documentation must also be submitted with the written report.

FINAL REPORT PROCEDURES

The student will submit the project documentation (the original copy of the written report plus any additional documentary material) to the project advisor. The deadline for the submission of the initial report draft and the final document may be established at the discretion of the project advisor. Drafts and reports need not be accepted by the advisor after the established deadline.

The qualifying project advisor will fill out the “Completion of Degree Requirement” form and forward both the form and the project documentation to the Registrar. The Registrar will record the completion of the degree requirement and the evaluation grade only if the project documentation accompanies the form. Otherwise, the Registrar will return the form to the initiator. In the case of a group project report, a separate completion form must be submitted for each student.

The student is responsible for the cost of preparing only the original copy of the written report. The cost of additional copies will be borne by the individual or organization desiring them. It is highly recommended that each student retain a copy of their project for future reference.

GROUP QUALIFYING PROJECT EFFORTS

Students meeting a qualifying project degree requirement by participation in a group, or team effort, will submit, at the discretion of the project advisor, either a single, comprehensive written report from the group, or individual written reports from each member of the group. A single, comprehensive written report must, however, include some means by which each individual’s contribution to the group effort may be clearly identified. This identification may take the form of an “authorship page,” simply a list of individual chapters and their respective authors, or of a pre-facing statement in which each contributing group member is named as having carried out one or more specific tasks within the overall project effort.

In the case where one or more students leave an ongoing group project after having contributed at least one unit each of project effort, those students, again at the discretion of the project advisor, will submit either a single written report or individual written reports in satisfying the qualifying project documentation requirement. The same means of identifying individual contributions will be employed as described above.

CENTER FOR COMMUNICATION ACROSS THE CURRICULUM

(Upper Level; Project Center)

Accompanying strong emphasis on project work at WPI is strong emphasis on high quality presentation of materials such as proposals, written reports, term papers, and abstracts describing the project work. To assist you in developing your writing and oral presentation skills, WPI has established a Center for Communication Across the Curriculum that offers writing and presentation consultations, style guidelines, writing manuals and presentation videotapes. Style guidelines, writing manuals and specially prepared handouts concerned with report writing are available. Small group or individual conferences scheduled by appointment with the writing consultants constitute an additional service provided by the Center to help students with their writing skills. For further information, contact the Humanities and Arts Department.

DISSEMINATION OF PROJECT REPORTS

MQPs and IQPs completed for off-campus agencies are usually distributed within the sponsoring agency by the agency project liaison. All MQP and IQP reports are catalogued for reference in the Gordon Library for five years after being submitted to the faculty advisor. After that period, they are returned to the faculty advisor(s).

Students thus must be responsible for keeping personal copies of project reports for their own permanent professional records. WPI strongly encourages students to prepare MQP and IQP reports in electronic (diskette) as well as hard copy formats. In this way, reports can be reviewed for later use by students, and incorporated into a professional portfolio.

Thus, MQPs and IQPs are best viewed as research reports which establish good professional practices as well as being potential sources for further study and research.
Project opportunities have been established at industrial, institutional, and governmental organizations. Projects are available in nearly all disciplines. Announcements of off-campus project opportunities are made annually in the fall and January.

Students work on problems at the off-campus site in cooperation with site personnel and under the overall supervision of WPI faculty. The WPI project centers feature programs specifically chosen for the educational merit and close relationship to the student's interest.

Students may participate on a full-time basis. Only students who have demonstrated by acceptable work at WPI the necessary aptitude and sense of responsibility will be approved for study at a center. Students and advisors interested in off-campus project opportunities should contact the Projects Office for further information.

OFF-CAMPUS INSURANCE AND LEGAL AGREEMENTS
WPI's insurance program includes a broad range of coverage for students doing projects in cooperation with off-campus organizations. This insurance coverage requires proper documentation of individual student participation. All students doing project work with off-campus organizations must complete the pertinent portion of the project registration form. In certain cases where the project is included as part of a regular course, the course instructor must submit to the Projects Office a list of the students going off campus and the name(s) and address(es) of the organization(s) involved.

WPI has entered into a variety of agreements with off-campus organizations, covering a wide range of issues common to the projects program. Students agree to abide by these agreements during the registration for the project.

PROJECT CENTERS
Each Project Center has a WPI faculty member as the director, well-defined procedures for completing project work, and selective admissions processes. The Centers tend to be highly structured and require superior performance.

At the present time, the WPI project centers close to campus are:

- Advanced Aeronautics Design.
- Norton Company Project Center.
- Raytheon Company Project Center.
- Space Grant Aerospace Projects.
- St. Vincent Hospital, University of Massachusetts Medical Center, and Tufts School of Veterinary Medicine Project Centers.

See also page 45 for residential Project Centers at a distance from WPI.

ADVANCED AERONAUTICS DESIGN PROGRAM
The Advanced Aeronautics Design program provides project opportunities for students interested in aircraft and aircraft systems design. Central activity in this program is the design, construction, and testing of a heavy-lift, remotely piloted aircraft. Other projects may include topics in airfoil dynamics, wake flows, flow visualization, gas dynamics, combustion, etc. Details for these projects can be obtained from the Director of the Aerospace Program, Prof. Andreas N. Alexandrou x5147, andalexa@wpi.edu or Prof. David J. Olinger x5698, olinger@wpi.edu.

WPI/SPACE GRANT AEROSPACE PROJECTS PROGRAM
The WPI/Space Grant Program provides both IQP and MQP opportunities for students interested in Aerospace Engineering. The Program is supported by NASA's Massachusetts Space Grant Consortium and provides resources and organization for approximately twenty students pursuing projects each year. MQP opportunities cover diverse areas in Aeronautics and Astronautics and are often conducted in the research laboratories of the department. Projects are also conducted in collaboration with NASA Glenn Research Center and JPL. Future projects may include the design of a small satellite in cooperation with other universities of the Space Grant Consortium. Students completing MQPs are encouraged and supported to present their work in the annual AIAA Northeast Conference. In addition, the Space Grant offers summer job opportunities with major Aerospace companies and laboratories. Students interested in exploring opportunities should contact Professor Nikolaos Gatsonis, Mechanical Engineering Department, the Space Grant Affiliate Representative. MQP and IQP opportunities are announced each year by the Aerospace Program.

NORTON COMPANY PROJECT CENTER
Major Qualifying Project opportunities are available at Norton Company, the world's largest manufacturer of abrasives and located just five minutes by car from WPI. Project topics are provided by individual groups within Norton and, as such, vary from year to year; however, projects are often available for mechanical (materials, manufacturing, design), manufacturing, chemical, and industrial engineering majors, and occasionally electrical and computer engineering, management information systems, and management majors. Students who participate in the Norton Project Center gain experience solving real-life engineering problems, interact with practicing professionals, and enhance their presentation skills. Students interested in exploring project opportunities at Norton Company should contact Prof. Chrys Demetry, Mechanical Engineering Department.
THE MAJOR QUALIFYING PROJECT

The qualifying project in the major field of study should demonstrate application of the skills, methods, and knowledge of the discipline to the solution of a problem that would be representative of the type to be encountered in one’s career. The project’s content area should be carefully selected to complement the student’s total educational program. In defining the project area within which a specific topic is to be selected, the student and academic advisor should pay particular attention to the interrelationships that will exist between the bodies of knowledge represented by courses, independent studies, and Preliminary Qualifying Projects; and by the Interactive Qualifying Projects.

MQP activities encompass research, development, and application, involve analysis or synthesis, are experimental or theoretical, emphasize a particular subarea of the major, or combine aspects of several subareas. In many cases, especially in engineering, MQP’s involve capstone design activity. Long before final selection of a project topic, serious thought should be given as to which of these types of activities are to be included. Beyond these considerations, the MQP can also be viewed as an opportunity to publish, to gain experience in the business or public sectors, or to utilize special facilities like the Computer-Aided Design and Manufacturing Laboratories.

Off-campus MQPs are also very valuable for access to state-of-the-art resources and contacts for future professional work.

GETTING STARTED ON AN MQP

Project topics are originated by students, faculty, or practicing professionals participating in WPI’s off-campus project programs. A faculty member in each academic department acts as Project Coordinator for all majors within the department. The Project Coordinator has assembled MQP topic descriptions being proposed and has identified the faculty who will serve as project advisors for each topic. This information can also be reviewed in the reference section of Gordon Library and the Projects Office. Students can also seek the guidance of the Department Project Coordinator or the listed project advisor directly. All project opportunities—MQP, IQP, PQP, on-campus originated and off-campus originated—are made available to the student body through a planned information-sharing program of activities during C and D terms of the academic year prior to the start of the project.

Students should also consult the WPI home page for “WPI Faculty Research and IQP Interests” to determine areas of research interest where students may find opportunities for MQPs. Faculty research thus may lead indirectly to sponsorship of MQPs.

PROJECT PROPOSALS

Students are strongly encouraged to begin their MQPs with a project proposal. A detailed guide to preparing project proposals is available in department offices or at the Project Center.
The Interactive Qualifying Project (IQP) challenges students to identify, investigate, and report on a self-selected topic examining how science or technology interacts with societal structures and values. The objective of the IQP is to enable WPI graduates to understand, as citizens and as professionals, how their careers will affect the larger society of which they are part.

The interactive project is a broad and integrative educational experience. The procedure employed to relate the scientific or technological component to a social issue often arises from students’ formal work in the social sciences or humanities. The scientific or technological component is not limited to students’ major fields, though students can draw upon their own majors in choosing an IQP topic. The IQP provides unique opportunities in engineering education for significant international education and pre-professional experience. (See Residential Project Centers, page 45)

PREPARING FOR THE IQP
While the preparation of most students for the Major Qualifying Project (MQP) involves extensive studies in technology, preparing for the IQP emphasizes the development of an understanding of the concepts and analytical techniques of the social sciences. The social science courses taken to satisfy the 2/3-unit social science requirement should be chosen to support IQP preparation (as explained on pages 134-135). In some cases, this background will include the study of other disciplines relevant to particular IQP topics. Preparation guidelines are included in the respective IQP division descriptions which follow, pages 38-44.

Students should begin preparing for their IQPs during their first two years at WPI; most of this preparation should be completed prior to work on the project itself. Be sure to discuss IQP opportunities with your first-year advisor. In preparing for specific IQPs, you can seek the assistance of the IQP division coordinators indicated on the following pages by the divisions below.

RESOURCES
To help students decide on an area of study and to identify faculty members who might be potential advisors, the division descriptions that follow indicate the chief areas of IQP interest. The names of faculty who have expressed interest in advising projects in each of these divisions may be determined by scanning the project proposals listed on the web-site, www.wpi.edu/Academics/Projects/. A list of residential project centers, with associated faculty, follows the division descriptions. These consultants can provide you with more information about the areas, and can assist you in finding an advisor. If you have questions or need assistance with your early exploration of interactive project opportunities, see the staff at the Interdisciplinary and Global Studies Division Office in the Project Center. Also, consulting the database of Completed Projects (on the campus computer system) is most helpful in suggesting topics and/or advisors.

PROJECT PROPOSALS
Students are strongly encouraged to begin their IQP activity with a project proposal. A detailed outline on preparing project proposals is available in the Interdisciplinary and Global Studies Division Office in the Project Center. Only students submitting project proposals and the accompanying budget are eligible for college financial support for their IQPs.

DIVISION GUIDE

Division 41, Technology and Environment .. page 38
Division 42, Energy and Resources .. page 38
Division 43, Health Care and Technology ... page 39
Division 44, Urban and Environmental Planning .. page 39
Division 45, Science and Technology: Policy and Management page 40
Division 46, Social Studies of Science and Technology ... page 40
Division 47, Safety Analysis and Liability .. page 41
Division 48, Humanistic Studies of Technology .. page 42
Division 49, Economic Growth, Stability, and Development page 42
Division 50, Social and Human Services ... page 43
Division 51, Education in a Technological Society ... page 43
Division 52, Law and Technology ... page 44
Division 53, Historic and Artistic Preservation Technology page 44
DIVISION 41, TECHNOLOGY AND ENVIRONMENT

IQPs in the environmental area have dealt with a wide range of subjects, including hazardous waste, open space planning, climate changes, acid rain, aquatic weed control, and environmental impact statements. Topics may be global or a local issue; some projects are experimental and generate new data, while others are more theoretical in nature and apply prior research data. Projects must define an appropriate interaction, and be defined and managed within the allotted time period. Environmental projects require a broad base of interest and knowledge, and therefore should be undertaken by student teams rather than isolated individuals. A faculty advisor familiar with your topic and knowledgeable in its interdisciplinary aspects will be able to help your project group.

A project proposal should be done before the actual project is initiated. This proposal should state the question being examined, review the literature in the area of concern, summarize the methodology to be used in the project, suggest the data which will have to be collected, and describe the intended usefulness of the project. This proposal may be done as the first stage of the project, or as a PQP, depending on the advisor’s requirements.

A wide range of environmental problems are available for projects. The solution to some of these problems may be sought by various environmental organizations (such as Massachusetts Audubon Society) or governments (municipalities or state agencies); the chance to work on such problems provides the student group with the opportunity to solve a real problem while providing the organization or community with a beneficial report.

PREPARATION GUIDELINES

The following courses may provide some basic skills for projects:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB 2040</td>
<td>Principles of Ecology</td>
</tr>
<tr>
<td>CE 3059</td>
<td>Environmental Engineering</td>
</tr>
<tr>
<td>SS 2117</td>
<td>Environmental Economics</td>
</tr>
<tr>
<td>SS 2311</td>
<td>Legal Regulation of the Environment</td>
</tr>
</tbody>
</table>

Other courses should be taken, depending upon the particular project selected; for this reason it is helpful to think about the project in your sophomore year.

DIVISION 42, ENERGY AND RESOURCES

This division focuses on the problem of meeting society’s needs for energy and other mineral resources. The division seeks to promote interdisciplinary project work on energy and resource use and supply. We are concerned with the technological alternatives, the economic, environmental and human value questions that must be faced in choosing among these alternatives, and the role of our social systems and institutions in determining the choices that are made.

Emergence of energy as a distinct area of project activity began at WPI with the energy crisis of 1973-1974. Since then, the pattern of interests in this area both here and elsewhere have evolved in response to international energy developments. Initially, issues of scarcity — the adequacy of the world’s energy resources to meet a growing demand and the sudden massive escalation of energy prices that occurred from 1974-1979 — were a primary concern. This period witnessed much activity in modeling energy markets and forecasting trends in energy demand, supply, and prices. Similar concerns were raised about the supply of basic metals and minerals. Many studies were undertaken of the markets for these natural resources to identify long-run price trends, the prospects for cartelization, and the need for stockpiles.

More recently, at WPI the interests of students and faculty alike have shifted to an emphasis on “solutions.” In the last half dozen or so years most of our interdisciplinary student projects have examined the economic feasibility, the environmental side effects, and the impact on public health and mortality of various resource technologies. Renewable sources of energy such as solar, wind, wood, and hydroelectric have been investigated frequently. More conventional alternatives to high-priced oil such as coal, natural gas, and nuclear power have received their share of attention. Many of these investigations have been of the case study type, examining the feasibility of a new technology in a particular setting. Energy independence at the level of the individual home owner has been a popular theme. But other projects have examined more global issues such as the public’s attitude toward nuclear power and its role in shaping national energy policy.

PREPARATION GUIDELINES

The implementation of government resource policies frequently involves manipulation of resource markets. The decisions our society makes about alternative sources of natural resources and the extent of resource conservation adopted will, to a large extent, be determined by the economic laws of supply and demand operating in these markets. Therefore, an understanding of how the economy functions at the level of individual economic decision makers and individual markets is essential for the effective conduct of many resource IQPs. Appraising the economic viability of alternative means of obtaining resources frequently involves making investment studies; i.e., capital budgeting.
The role of government and public opinion in the formation of our national energy policy can best be understood and analyzed by a student who has a background in sociology or political science.

To obtain information on these subjects a student would take as many of the following courses as possible:

Management
- MG 2200 Financial Management
- MG 2850 Engineering Economics
- MG 3400 Production System Design

Philosophy and Religion
- PY 2712 Social and Political Philosophy
- PY 2714 Ethics and the Professions: Personal, Professional and Social Dilemmas

Social Sciences
- SS 1110 Introductory Microeconomics
- SS 1120 Introductory Macroeconomics
- SS 1203 Social Problems and Policy Issues
- SS 1301 U.S. Government
- SS 1303 American Public Policy
- SS 2111 Social Control of Business
- SS 2304 Governmental Decision Making and Administrative Law
- SS 3111/MG 3800 Managerial Economics

The SS courses listed above may be counted toward the 2/3-unit social science requirement.

DIVISION 43, HEALTH CARE AND TECHNOLOGY

For much of the period since the advent of Medicare and Medicaid legislation in the mid-1960s, the cost of medical care has grown explosively. Both in inflation adjusted dollars and as a percentage of Gross Domestic Product, medical care in the United States is now at a level greatly exceeding that of the early 1960s. Furthermore, because of the aging of the American population (the over-85 age group — the so-called “frail elderly” — is the fastest growing element of our population) and the growth of expensive medical technology, forces remain strong toward an even higher level of medical expenditures.

Projects in this division address the interaction between health care technologies and the delivery of medical care in the United States. These IQPs focus on major social concerns in medicine (e.g., Magnetic Resonance Imaging — MRI, the potential for computer-based “expert systems” in medical care, new technologies for maintaining the independence of the elderly, managerial systems to control the cost of medical care, laser surgery, etc.) and medical-moral issues (e.g., the living will, the right-to-die controversy, organ transplantation, wrongful-death and wrongful-life issues, human cloning, use of steroids in sports, universal health insurance, abortion, fetal tissue transplants, etc.).

There are several off-campus institutions and project centers available as resources for students interested in projects in this area. They include: St. Vincent Hospital, the University of Massachusetts Medical Center, the Massachusetts Biotechnology Park (located in Worcester), San Francisco General Hospital, and St. Mary’s Hospital, San Francisco. The division coordinators should be contacted for the names of WPI faculty members associated with these institutions.

PREPARATION GUIDELINES
Projects in this division are multidisciplinary and should appeal to students with widely differing backgrounds and interests. Those students planning to do IQPs in this area should develop institutional and methodical background in both the technological and social science areas appropriate to their projects. Examples of courses which introduce social science concepts fundamental to this project area are listed below; course work in more specific topics within this project area (e.g., PY 2713, Bioethics, etc.) is also available.

- SS 1110 Introductory Microeconomics
- SS 1120 Introductory Macroeconomics
- SS 1202 Sociological Concepts and Comparative Analysis
- SS 1203 Social Problems and Policy Issues
- SS 1301 U.S. Government
- SS 1310 Law, Courts and Politics
- SS 1402 Introduction to Social Psychology
- SS 2302 Science-Technology Policy

The SS courses listed above may also be counted toward the 2/3-unit social science requirement.

DIVISION 44, URBAN AND ENVIRONMENTAL PLANNING

Urban and Environmental Planning IQPs offer the student a wide range of opportunities to investigate and analyze problems that require a systematic and comprehensive approach. IQP topics cover a wide range of areas, including:

- Environmental analysis — such as the investigation of the “quality of life” or the impact resulting from physical alterations of the environment.
- Environmental impact statements.
- Resource management programs — such as water management programs for lakes, groundwater, rivers; or forest management programs for fuel, lumber, and recreation.
- Redevelopment and renewal of city neighborhoods.
- Fiscal analysis and program impacts — such as those resulting from the implementation in Massachusetts of Proposition 2 1/2.
- Preservation of agricultural lands.
- Conservation and open-space planning.
- Demographic policies and community facilities planning.
- Land use planning.
- Impacts of infrastructure development.
Often these problems are complex, requiring the use of concepts and skills provided by a range of professions and disciplines: sociology, economics, political science, physical science, law, and engineering. Ignoring these contributions often leads to environmental and social impact, such as air and water pollution, unexpected fiscal burdens, noise, environmental disasters, and unhealthy living conditions. These now are evident in the "treated" water from our urban areas, in the disposal of solid waste from our consumer society, in the sterility of our "planned" subdivisions, and in the global alteration of fragile environment. Comprehensive planning for our urban and natural environment necessitates a holistic approach to solving specific problems which are faced by our neighborhoods, rural environments, urban areas, and the nation, as well as the world itself. Such problems will become worse unless comprehensive planning is understood and used.

PREPARATION GUIDELINES
The concepts and skills necessary for a planning-project will depend on the specific area. Often these multidisciplinary skills are brought to a project through a team effort, in which individuals share their learned disciplinary skills and concepts to solve the problem together. The following are suggested courses which could be beneficial to students who are interested in doing projects in Area 44:

Civil Engineering
- CE 3070 Introduction to Urban and Environmental Planning
- CE 3074 Environmental Analysis
- CE 4071 Land Use Development and Controls

Social Science
- SS 1203 Social Problems and Policy Issues
- SS 2117 Environmental Economics
- SS 2311 Legal Regulation of the Environment

The SS courses listed above may be counted toward the 2/3-unit social science requirement.

Humanities
- HI 1311 Introduction to American Urban History

Policy analysis is one approach, but other projects have used a slightly different approach by focusing on the organizations that perform research and develop technologies. These projects contribute to the design of successful public and organizational policy by explaining how universities and corporations operate, and by identifying those organizational characteristics that are pertinent to corporate or public policy. IQPs have analyzed the prospects for university-industry relations, the development of entrepreneurs, the implications of the diffusion of innovations in organizations, the impact of new technologies on jobs, and the government's role in moderating the social impact of the shift to a high-technology service economy.

DIVISION 46, SOCIAL STUDIES OF SCIENCE AND TECHNOLOGY

Projects in this area cover a variety of specific topics, but are united by a general perspective which is characteristic of the field of Science, Technology and Society studies. S.T.S., as it is called, is known by its emphasis on the critical examination of conventional wisdom about the social implications of science and technology.

When proponents proclaim the dawn of a new era or predict that great social progress will accompany the emergence of a technology, S.T.S. people look for the other side of the coin. When opponents attack technology, due to the alienation, loss of meaning, and control issues it creates, S.T.S. people go poking around to see what new possibilities will emerge. Whether the result will be new freedom or new tyranny often depends on the surrounding social arrangements.

In short, the aim of a S.T.S. project is to begin throwing off our blinders about the nature of technology, and really examining the ways in which technologies interact with social systems. One starts by dropping the idea that technology impacts society, rather than vice versa, and by questioning the assumption that technological advances automatically represent social progress. Much follows from this modest beginning.
S.T.S. is sometimes called “the Science of Science,” as you adopt an attitude of scientific skepticism and then look at science itself, or a technological issue. The result is a critical, but not negative, perspective on technology which paves the way toward a balanced assessment of the benefits and costs of technical change.

Classic S.T.S. projects might involve analysis of tension between technical experts and democratically-elected leaders, the conditions under which technology seems to become an irresistible social force or the way in which distribution of wealth, power, and status are affected by technological change. Organizational “mindsets” leading to technical accidents have also been good project themes.

Technology is rarely neutral in socio-political terms, but its impact can be subtle. The most challenging and rewarding type of S.T.S. study deals with the way technology affects the way in which we relate to the world or view ourselves. Those interested in the interface of technology and society are often like a fish trying to understand water, the medium in which it lives. The great challenge of this field, but also its greatest reward, is that it seems to require considerable reflection about society and the role of the technologist in it to do a first rate S.T.S. project.

CURRENT PROJECT THEMES
Within this broad field, four general project themes are being developed into continuing project streams. A few illustrations of each type are offered below from the list of completed projects.

1. Technological Literacy and Public Understanding of Science
2. Reception of Scientific and Technical Innovations by Affected Communities and Technical Professions
3. Impact and Equity Issues Related to Gender, Race, Ethnicity or Social Class.
4. Reforms in Science or Engineering Education
5. Processes of Technology Transfer and Product Innovation

PREPARATION GUIDELINES
As one can see, S.T.S. is by its nature an interdisciplinary field. Hence, project preparation could appropriately draw from a range of academic disciplines. However, it is usually best to concentrate on picking up the perspective first, and a variety of courses in social sciences, history, and philosophy are taught from S.T.S. perspective. The courses that do the best job of introducing this approach include:

SS 1202 Sociological Concepts and Comparative Analysis
SS 2208 The Society-Technology Debate
HI 3331 Topics in Science, Technology and Society
ID 3150 Light, Vision, and Understanding
SS 2302 Science-Technology Policy
SS 2304 Governmental Decision Making and Administrative Law
CS 3043 Social Implications of Information Processing
HI 2334 European Technology Development
EN 2252 Science and Scientists in Modern Literature

DIVISION 47, SAFETY ANALYSIS AND LIABILITY
Projects in this division deal with issues of people and property safety and the management of risk associated with the hazards inherent in today’s society.

The analysis of risk required two components:
1. a measure of severity, and
2. a probability distribution

Typical measures of severity include deaths, injuries, dollars of property damage and days of business interruption. The probability distribution gives a probability for each value the severity measure can take. Some of the risks that have been studied as part of this project division have included risks due to unwanted fires, the misuse and abuse of consumer products, those risks associated with workplace safety and risks associated with natural disasters. Risk management and analysis tools used have included scenario development, fault tree construction and event tree analysis.

The risk associated with unwanted fires is of special interest because each year fires claim a greater toll than earthquakes, floods, tornadoes, and all other natural disasters combined. In just a few minutes time, a single fire or explosion can have catastrophic consequences in facilities ranging from hotels, hospitals and schools to high-rise offices and complex manufacturing operations. Projects in this topic have examined fire department operation, investigated the economic consequences of design changes and abuse of consumer products, those risks associated with workplace safety and risks associated with natural disasters. Risk management and analysis tools used have included scenario development, fault tree construction and event tree analysis.

The risk associated with workplace safety and the management of risk associated with the hazards inherent in today’s society.

Liability issues focus on the risk associated with products and the consequences of people’s actions. Some recent projects in this have been:

1. Forensic Investigation of an LP-Gas Cylinder Explosion
2. An Injury Investigation of Quadriplegia Resulting from an Automatic Shoulder Seatbelt: Design Failure or Negligent in Use
3. Rollover Propensity of the Suzuki Samurai
4. Legal, product liability and personal injury issues resulting from the case of Locke vs. Mack Trucking, Inc.

Some useful courses for preparing for “Safety Analysis and Liability” IQP’s include:

- **FP 3070** Fundamental of Firesafety Analysis
- **MG 2950** Business Law and Ethics
- **MA 4213** Risk Theory
- **SS 1202** Sociological Concepts and Analysis
- **SS 1203** Social Problems and Policy Issues
- **SS 1301** U. S. Government
- **SS 1310** Law, Courts, and Politics
- **SS 2111** Social Control of Business
- **SS 2301** Public Policy Formation and Implementation
- **SS 2311** Legal Regulation of the Environment
- **SS 2403** Social Research and Social Problem-Solving
DIVISION 48, HUMANISTIC STUDIES OF TECHNOLOGY

The overall theme of projects in this group is the interaction of science and technology with the humanistic and nonquantitative aspects of culture. Together with the relevant fields in science and technology, the appropriate areas of culture from which the methodologies and substance of the projects will be drawn include philosophy, literature, history, religion, humanistic psychology, and the fine arts, with emphasis on values and ideas. The interaction of all levels of technology with the cultures of traditional and developing societies, as well as developed ones, is within the scope of the group. Thus, projects can range over an enormously broad area to include such diverse topics as the relationship of the literature to technology or science, philosophical analysis of the nature and role of the individual in a high-level technological society, or an historical examination of the reductionist view of man as a machine.

Whenever possible, two faculty members will advise each project, one advisor being drawn from the appropriate humanities or art discipline. Faculty members will explain to students the scientific, technological, and humanistic background necessary to begin the projects for which they will act as advisors.

PREPARATION GUIDELINES

Besides a general familiarity with the basic concepts and ideas in the physical sciences, projects in this area involve historical, cultural, social, psychological or philosophical analysis. Many projects are aided by a general background and familiarity with the literature and fine arts of the modern era.

EN 2252 Science and Scientists in Modern Literature
HI 2332 American Science and Technology from 1859
HI 2333 History of Science From 1700
HI 2334 European Technological Development
HI 3331 Topics in Science, Technology and Society
ID 3150 Light, Vision, and Understanding
PY 2711 Philosophical Theories of Knowledge and Reality
PY 2713 Bioethics
SS 2207 Creativity and the Scientific Community
SS 2208 The Society - Technology Debate
SS 3278 Technology Assessment and Impact Analysis Seminar

Courses might also be selected from the literature, music, art, and philosophy offerings appropriate for the period and national group being studied (either American, European, or Asian), or the history of architecture.

The SS courses listed above may be counted toward the 2/3-unit social science requirement.

DIVISION 49, ECONOMIC GROWTH, STABILITY AND DEVELOPMENT

There are two major areas of interest in the division:

A. PROBLEMS OF STABILITY AND CHANGE IN MATURE COUNTRIES

This project area is concerned with many of the issues that confront the world’s developed economies. These issues include the distribution of income and wealth, the kinds and quantities of available jobs, who obtains or fails to obtain the more desirable jobs, and the causes and consequences of inflation and recession. The analysis can focus upon particular sectors or upon the nation as an aggregate. Emphasis is placed upon the manner in which technological and social changes are integrated into the organization of work in society. Economic, social, psychological, as well as political and technological questions can be raised in this project area.

B. PROBLEMS ASSOCIATED WITH GROWTH IN DEVELOPING NATIONS

This project area is intended to encompass a wide range of problems facing developing nations. Generally, projects analyze the environmental, social, economical, and distributional impacts of growth and development, and the design of policies aimed at eradicating poverty and unemployment. In more specific terms, these projects address such issues as sustainable development strategies, the choice of sectoral policies, the choice of monetary and fiscal policies, rapid population growth, housing and urbanization, education and training, questions of “appropriate technology” and its transfer, import substitution and export promotion, foreign aid and foreign debt, foreign investment, and the role of international firms.

PREPARATION GUIDELINES

The foci of these project areas are economics, psychology and policy studies. Students anticipating work in these areas should have a background in economics, social science, and psychology, and a familiarity with the techniques of statistical analysis and/or computer simulation. Among the courses suggested for preparation are:

SS 2105 Dynamic Modeling of Economic and Social Systems
SS 1120 Introductory Macroeconomics
SS 2120 Intermediate Macroeconomics
SS 2125 Development Economics
SS 1110 Introductory Microeconomics
SS 2110 Intermediate Microeconomics
SS 2117 Environmental Economics
SS 2111 Social Control of Business
SS 1402 Introduction to Social Psychology
SS 2405 A Psychological Perspective on Environmental Problem Solving
SS 2406 Cross Cultural Psychology: Human Behavior in a Global Perspective
SS 1303 American Public Policy
SS 1310 Law, Courts, and Politics
SS 2311 Legal Regulation of the Environment
SS 2312 International Environmental Policy

The courses listed above may be counted toward the 2/3-unit social science requirement.

DIVISION 50, SOCIAL AND HUMAN SERVICES

The delivery of social services is one of the most difficult and controversial problems currently faced by our society. In the past, IQPs have examined such issues as services for the mentally or physically handicapped, especially public school students, rehabilitation of juveniles, treatment for alcoholism and drug abuse, consumer information awareness, assessment of college life and student attitudes, and other community service concerns. Many projects in this division will be concerned with the strengths and deficiencies of the systems which the private and the public sectors of our society have established or are proposing to establish for dealing with community problems.

PREPARATION GUIDELINES
Projects in this category are multidisciplinary, and should appeal to students with widely differing backgrounds and interests. Those students who expect to do IQPs in this area should develop analytic backgrounds in the particular social science area(s) appropriate to their project. Examples of courses which introduce concepts fundamental to this division are listed below. Students anticipating IQPs which involve economic analysis should consider course work in that discipline. Also, projects involving surveying of public attitudes will require background in social analysis as found in SS 1402 and SS 2403. SS 2203 is an excellent introduction to problem-solving in the social sciences. MG 2300 is recommended for projects involving conflict resolution and management of social problems through industrial engineering techniques.

Recommended Courses
MG 2300 Organizational Science—Foundation
SS 1110 Introductory Microeconomics
SS 1120 Introductory Macroeconomics
SS 1202 Sociological Concepts and Analysis
SS 1203 Social Problems and Policy Issues
SS 2311 Legal Regulation of the Environment

The SS courses listed above may be counted towards the 2/3-unit social science requirement.

Examples of IQPs recently completed in this division are:
• A Guide to References That Assist Wheelchair Users in Addressing Concerns That Can Occur During College Careers.
• Alcohol and Youth Culture in Spain and the U.S.
• Computer Adaptations for Visually Impaired.
• Streamlining Communication Systems for Autistic Children

DIVISION 51, EDUCATION IN A TECHNOLOGICAL SOCIETY

Offerings in this area include projects in which WPI students teach and/or develop curricula at all grade levels from K through college in a variety of subjects. In other projects, students apply technology to learning (through research and development of teaching aids and machines), deal with mass media (methods and implications of teaching large segments of the population), or focus on the teaching-learning process (through study and research of learning models and theories).

Many projects are carried out with local regional public and private schools through the “WPI School-College Collaboration in Mathematics and Science Education.” WPI has a close working relationship with the nearby Doherty High School. For details of these programs, contact Assistant Provost Lance Schachterle, Boynton Hall.

PREPARATION GUIDELINES
Education plays a dominant role in the modern, technical society. It is a compulsory, long-term experience for a significant segment of the American population. To prepare for projects in this area, the student should have a perspective on modern American history with emphasis on the development and growth of the present educational system, an understanding of psychological development and theories of learning, and a background in the elementary concepts of social science research.

HI 1311 Introduction to American Urban History
SS 1202 Sociological Concepts and Analysis
SS 1402 Introduction to Social Psychology
SS 1203 Social Problems and Policy Issues
SS 2401 The Social Psychology of Education

The SS courses listed above may be counted toward the 2/3-unit social science requirement.

For students planning to develop science curriculum, the appropriate science and mathematics background is assumed.

TEACHER CERTIFICATION OPTION
Students doing education IQPs may be interested in also qualifying as a secondary school mathematics or science teacher. For information on this option, see “Teacher Certification” on page 97.
DIVISION 52, LAW AND TECHNOLOGY

Technological developments take place in the context of a complex legal and regulatory environment. For example, courts will apply principles drawn from unwritten common law to restrict land uses by property owners. In contrast, developments in communications, energy, and pharmaceuticals are governed by an interlocking structure of statutes and regulations at both the state and federal levels.

IQPs in this division focus on the interaction between legal and regulatory institutions and technology. Project students study statutes and their history, regulatory systems, agency decision making, and judicial decisions to determine their impact on technology.

In addition, students study the operation of technology in a legal environment to determine whether social goals expressed in law are realized in practice. Will the Clean Air Act clean air? Do regulations for the handling and disposal of toxic materials protect the public? Can regulation effectively promote energy conservation? Do procedures governing drug approval unnecessarily prevent the speedy introduction of new treatment methods?

Aspects of legal and regulatory decision making are also studied. When do courts accept scientific evidence as determinative of facts? Can scientists provide objective, expert advice for governmental decisions or are scientists destined to become partisan policy advocates?

The answers to all these questions are important if technology is to aid us in the achievement of social goals and if courts and regulatory agencies are to succeed in defining and implementing social policy.

PREPARATION GUIDELINES

Successful completion of IQPs on the topics described above depend, in part, on prior preparation in government, law and society-technology issues. The following courses support IQP research in this division:

- HI 2317 Law and Society in America, 1865-1910
- SS 1110 Introductory Microeconomics
- SS 1120 Introductory Macroeconomics
- SS 1301 U.S. Government
- SS 1303 American Public Policy
- SS 1310 Law, Courts, and Politics
- SS 2208 The Society-Technology Debate
- SS 2302 Science-Technology Policy
- SS 2304 Governmental Decision Making and Administrative Law
- SS 2310 Constitutional Law
- SS 2311 Legal Regulation of the Environment
- SS 3278 Technology Assessment and Impact Analysis Seminar

Students should consider combining courses listed above to form sequences in policy studies, law, or society-technology studies. Additional information on sequences appears in the description of social science courses.

DIVISION 53, HISTORIC AND ARTISTIC PRESERVATION TECHNOLOGY

Projects in this division examine the value and policy issues surrounding decisions on which historic and artistic objects such as buildings, battlefields, statues, monuments, prints, drawings, paintings, and sculptures should be preserved and how best to preserve them. They may also deal with the technical issues involved in art conservation and restoration and involve application of the technical methods available for analyzing the composition of historic objects.

PREPARATION GUIDELINES

Ideal preparation for projects in this division would include art history and material science and familiarity with data base management programs.

Recommended Courses:

- AR 1111 Introduction to Art History
- AR 3150 Light, Vision, and Understanding
- AR 2113 Topics in 19th and 20th Century Architecture
- HI 1331 Introduction to the History of Science
- HI 1332 Introduction to the History of Technology
- ES 2001 Introduction to Materials Science
- ME 2820 Materials Processing
- CM 580 Materials Characterization in the Solid State
- CM 508 Catalysis and Surface Science of Materials
In addition to IQP and MQP opportunities on campus, through the Global Perspective Program, WPI students have many opportunities to work for a seven-week term at one of WPI’s residential project sites. Project work conducted at these sites provides teams of students with extraordinary opportunities to learn by solving problems provided by professional or government agencies. Most of these programs offer IQPs; MQPs and one-term Sufficiencies (see page 47) are available depending on faculty advisors.

Registration for IQP work in these programs begins in the fall with the Global Opportunities Fair. At the Fair, IQP and exchange program directors will be available to talk with students about these opportunities. Students should apply in the fall of the year preceding the year in which they would like to participate. Further information is available at the Interdisciplinary and Global Studies Division in the Project Center.

RESIDENTIAL PROGRAMS

All programs offer the students the opportunity to complete a project in seven weeks of full-time work. Advance preparation is required. Faculty advisors are in residence at the site.

<table>
<thead>
<tr>
<th>TERMS OFFERED</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenbelt, Maryland*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester, Massachusetts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bangkok, Thailand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London, England</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon Valley, California**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copenhagen, Denmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmstadt, Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London, England</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madrid, Spain***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melbourne, Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Juan, Puerto Rico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kariba, Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London, England</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San José, Costa Rica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venice, Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*This site offers MQP program at NASA Goddard Center.
** MQP opportunities only.
***Sufficiency opportunities only.

WASHINGTON PROJECT CENTER

Interim Director: Prof. D. Di Biasio, Project Center

WPI’s Washington Project Center operates in Term B each year. Students, usually juniors and seniors, work in three-member project teams with a variety of federal, private, and nonprofit groups. In the past, projects have been completed with the U.S. Coast Guard, the Office of Patents and Trademarks, the National Science Foundation, the National Academy of Engineering, the National Society of Professional Engineers, the Agency for International Development, the Consumer Product Safety Commission, the Department of Health and Human Services, among many others. Students work on their projects at the sponsoring agency for the entire seven-week term, while living in downtown Washington, D.C., within several blocks of the White House and many government agencies.

There are several qualities that every Washington Project Center applicant should have. Most importantly, students should have a curiosity about how government works and the importance of national action in the areas of the environment, education, health, and defense, for instance, and the importance of U.S. actions on global matters. Washington is one of the information capitals of the world; thus students have the opportunity to conduct interviews with policy makers of many different disciplines and to examine data not available elsewhere. International students would find this experience to be very valuable. Secondly, students should be willing to learn about tools of social science research, which may include conducting surveys by mail, by telephone interviewing, or by face-to-face interviewing.

Living in Washington provides students an endless access to the free national museums that are part of the Smithsonian complex. They include the Air and Space Museum, the Museum of American History, the Natural History Museum, the National Gallery, the museums of African and Oriental Art. In addition there are the Lincoln, Jefferson and Vietnam Memorials; the National Holocaust Museum; the National Archives; the Washington Monument; and of course, the Senate and House hearings, which are open to the public.

All Washington students are required to register for the preparation course ID 2050 in the A Term preceding going to Washington. Students should also be making satisfactory progress in their academic program at WPI.
BOSTON PROJECT PROGRAM

Director: Prof. F. Carrera, Project Center

WPI’s Boston Project Program operates in Term D each year. WPI project teams, with a resident WPI faculty member, work on topics offered by government agencies, environmental and community organizations, medical and financial institutions, and private-sector industrial firms. Boston is a world-class city, with a wealth of cultural, educational, recreational and touristic opportunities. It is an exciting, vital, and stimulating environment. It is, of course, not far from WPI, which minimizes the expense of getting there and back compared to a site half-a-world away.

Students will work in teams of three on projects at the sponsoring organization for the entire seven-week term. Student housing and project assignments are arranged in advance. Selection of students for this program takes place in Term B for the following academic year. All Boston students are required to register for a preparation course offered in the C term preceding the D-Term project.

WORCESTER PROJECT CENTER

Director: Prof. Lance Schachterle, Boynton Hall, 2nd Floor

Students will work in offices in central Worcester and commute daily from their WPI base. Projects will be recruited from private and public Worcester agencies focusing on policy issues where recommendations can make significant contributions to improving the city we live in. Sponsorship includes government, public interest, charitable and educational organizations.

THE WPI/GODDARD SPACE FLIGHT CENTER MQP PROGRAM

Director: Prof. Fred Looft, Atwater Kent 231

The Goddard Space Flight Center Project Program operates in Term A each year and is for students seeking to complete their Major Qualifying Project requirement. Students work in teams of three or four on projects and problems related to unmanned, earth observation space flight systems and support. Recent and on-going projects have included the design and development of new coatings for next generation mirrors, a prototype of a new star pointing control system and sensor, software for optimized load sharing on computers used to design spacecraft, and the automation of a very low vacuum test chamber used to test and qualify components and systems for space-flight.

The GSFC Project Program is significant in that it supports both the WPI mission to provide off-campus project experiences to our students, and supports the Goddard mission.

SILICON VALLEY PROJECT CENTER

Director: Prof. David Finkel, Fuller Labs 231

Silicon Valley, California, is the home to many of the most dynamic companies in the computer industry and in other related high-technology industries. Established companies, such as Sun, Intel, and Hewlett-Packard, mix with small start-ups to provide an exciting atmosphere of technology and entrepreneurship. The projects will expose students to both the cutting-edge technology and the dynamic entrepreneurship of Silicon Valley.

Students participating in the Silicon Valley project center will participate in a Preliminary Qualifying Project (PQP) during B-Term, 2000. During this PQP, the students will perform background research in the area of their project, learn about the company and the industry where they will be performing their project, and hold discussion with their company mentor about their project work. One of the outcomes of the PQP is a detailed proposal, describing the general era of the project, the specific problem to be addressed, and the approach the students will adopt to solving the problem.
The projects will be conducted during C-Term 2001 in Silicon Valley. The students will work full-time at their sponsor’s site for approximately 9 weeks, from early January through early March. The students will work with a mentor from the sponsoring company and with a WPI faculty advisor. The project work will include the completion of an MQP report and a presentation on the project work to the sponsoring organization.

Admission to the Silicon Valley Project Center is based on academic standing and performance, essay response, evidence of maturity and independence, availability of projects in a specific area, qualifications relevant to the project offered, and results of an interview.

Projects may be available in a number of disciplines, including:
- Biology/Biotechnology
- Chemical Engineering
- Computer Science
- Electrical Engineering

PROGRAMS IN EUROPE

DENMARK PROJECT CENTER

Directors: Prof. Peder C. Pedersen, Atwater Kent 205
Tom H. Thomsen, International House

What makes Denmark an ideal place for an IQP Project Center is a combination of several factors. The Danish culture is very much open to the kind of interdisciplinary academic questioning which is the foundation of any good IQP project.

The Denmark project center, located in Copenhagen, operates in D-term each year. In the past, projects have been completed with The International People’s College, Danish Association for International Co-operation, The Engineering College of Copenhagen, The Danish Society for the Blind and the Danish Bicycle Federation. It is expected that future IQP projects in Denmark will be related to environmental issues and work with museums, in addition to continuing to work for not-for-profit organizations.

A WPI faculty advisor remains in residence throughout the 8-week term. Students are required to register for 1/6 PQP in B-term and 1/6 PQP in C term prior to leaving for Denmark. PQP work consists of project preparation including writing a project proposal and a seminar in Danish history and culture. In addition, students participate in a three-day orientation program in Denmark. The program gives an introduction to Copenhagen, Danish language and contemporary issues.

Housing in Copenhagen will, in most cases, be apartments located near the center of Copenhagen, with stores and public transportation within a few minutes walk.

LONDON PROJECT CENTER

Director: Prof. P. Davis, Stratton Hall 202D

WPI offers IQP Programs in London in Terms C, D and E. In IQP Programs, WPI students, with a resident WPI faculty member, work in project teams with British public and private agencies. Student housing and project assignments are arranged in advance through a London-based coordinator. Many opportunities are available during the term for visits to cultural institutions in London.

The WPI London Project Center has cooperated on IQPs with organizations such as the Institution for Electrical Engineers, the Genetic Interest Group, the London Transport Museum, the Tower of London, the Imperial War Museum, the Department of the Environment, and the Science Museum. Selection of students in the program normally begins in Term B for the following summer and academic year. All London students are required to write a Project Proposal in the term preceding their work in London.

MADRID SUFFICIENCY PROGRAM

Director: Prof. L. Fontanella, Salisbury Labs 17

Students spend seven weeks in one of the world’s most vibrant, fashionable cities. Madrid is home to some of Europe’s most active museums, a bull ring, a massive soccer stadium, grand parks, regional fiestas, and “tapas” bars where samplings of regional foods is the fare.

Madrid and nearby El Escorial were once the center of by far the largest empire the world has ever known. Today Madrid is a modern, post-Spanish-Civil War phenomenon of culture and commerce – the acid-test through which business and art must pass in order to prove themselves as successful.

Students complete Sufficiency projects on the cultural history of Spain by studying the country’s past at different sites in and outside of Madrid, and students are shown access to the things that in contrast define present-day Spain. These projects are appropriate for students who have completed at least the Intermediate II level of Spanish. For these students, the expectation is vast cultural acquisition and notable linguistic improvement. The Madrid Sufficiency will prepare students for later project work at Spanish-speaking cities. For more advanced students planning to minor in Spanish, the Madrid experience can be tailored in the form of independent study projects.

GERMANY PROJECT PROGRAM

Director: Prof. Jamison, Projects Center

WPI’s Project Program in Darmstadt, Germany is operated in cooperation with the Technical University of Darmstadt (TUD), one of Europe’s most prestigious technical universities. Darmstadt is a large commercial and industrial center located near Frankfurt, a major air and rail transportation center, which makes Darmstadt an excellent point of departure for travel throughout Europe.
Many of the projects are based at or near the University which provides support to WPI students through office space, computers, library facilities, athletic facilities and housing.

Many of the projects involve comparative studies between German and American practices in industry, government and education. Recent projects for example involved studies of American and German airport fire safety regulations and the legal procedures required to place new drugs on the market.

Since it is highly desirable that students have some German language ability, preference in selection for this program may be given to students with such a qualification. The program is normally operated in Term D with the preparation course in Term C.

In addition to the Project Program, WPI also has a full-year exchange program with TUD which is an outstanding educational and cultural experience. This usually takes place in the Junior year with fluency in German required for the full-year exchange experience.

VENICE PROJECT CENTER

Director: Prof. Richard Vaz, Atwater Kent 225

Called the most beautiful city in the world, Venice has a haunting atmosphere which easily evokes the splendor of its past. A city with an outstanding historical, artistic and architectural heritage, much of its uniqueness comes from its symbiotic relationship with the sea and the lagoon. Yet today, this relationship contributes to serious environmental and economic problems. As daily life revolves around the canals, proposed solutions to these problems usually have a direct impact of the inhabitants of Venice.

The IQPs in Venice provide an opportunity for students to see the implementation of their projects put to use for the benefit of an entire city. Projects are conducted for Venetian, American and international organizations and include environmental, socioeconomic, artistic, cultural and technical concerns important to the sustainability of this historic city.

WPI faculty advisors remain in residence throughout the 8-week term. Students are required to register for three preparatory activities: a 1/6 unit on Italian history and culture in Term C; a 1/6 unit on the Italian language in Term D; and a 1/6 unit PQP in Term D. Prior knowledge of the Italian language is not required.

COSTA RICA PROJECT CENTER

Director: Prof. Susan Vernon-Gerstenfeld, Project Center

This project center, located in San Jose, Costa Rica, operates in E-term. In this stable democracy, students have the opportunity to perform IQPs in a variety of settings ranging from rain forests, to local manufacturing plants, to multinational companies and organizations, to Costa Rican government offices.

Since Costa Rica is a rapidly developing nation, the interactions between technology and social implications are graphic. Working full-time, in each sponsoring organization, students experience the thrill of a new culture and the pleasure of providing needed work for the sponsor. Teamwork is the rule for participating students, who work together in three’s on issues that may be local or global. For example, students have worked in a rain forest to determine how many people may use the forest without damaging it during a given period. Students may also work on international business issues as some have done in a multinational health care company. In addition, students have worked with the National Museum and with a world class botanical garden as well as with one of the organizations responsible for preserving the National Rain Forests. Some students have computerized and linked satellite offices with a central office in one of the government ministries.

Before leaving to go on-site, students participate in ID 2050 and a PQP with their on-site advisor. In Costa Rica, students have the opportunity of improving their Spanish, if they have some, or learning enough for survival through a short intensive course taken during the beginning of their stay. They continue their immersion during their off-hours on all of the myriad excursions they will undertake throughout the country or by simply being in Costa Rica. However, most of the projects can take place using English. Housing and transportation are arranged before the students leave.

Costa Rica is a land of live and dormant volcanoes, white water that is perfect for rafting, dense but very explorable jungles and rainforests, world-renowned beaches, and very amicable people.
PUERTO RICO PROJECT CENTER

Director: Prof. Susan Vernon-Gerstenfeld, Project Center

The Puerto Rico Project Center operates in D-term in San Juan, Puerto Rico, the capital of the Commonwealth of Puerto Rico. As in other off-campus centers, students work in teams of three, full-time, in the offices of the government of the Commonwealth, as well as in industry. Students perform their work under the guidance of a WPI faculty person who accompanies the students to San Juan. In addition, the sponsoring agency or company provides a liaison person to work with the students.

Projects span a wide variety of topics and include all of the usual governmental concerns including transportation, health, housing, the environment, social welfare, infrastructure, and land use for a few examples. The fact that these concerns apply to a culture different from that of mainland U.S. makes them particularly interesting.

Students interested in this center will have the opportunity to learn some Spanish if they wish or to apply that which they already know. They will also have the opportunity to be immersed in a Latin culture and to having access to a large metropolitan area. There will be abundant opportunities to see other parts of the island and to visit sites such as the Arecibo (outerspace) Observatory, El Junque national rain forest, the phosphorescent bay at La Parguera, the art museum at Ponce, El Moro fortress in San Juan, and the white sand beach at Loquillo. Housing and transportation are arranged before the students arrive on site.

Students going to Puerto Rico are required to take ID 2050 in C-term prior to their leaving. In taking ID 2050, they also receive credit for a social science distribution requirement.

PROGRAMS IN AFRICA

ZIMBABWE PROJECT PROGRAM

Director: Prof. Arthur Gerstenfeld, Washburn 212

In the spirit of a true global program, WPI is establishing its first project site in Zimbabwe, Africa in 1999. This program will be conducted in E term during the dry season. The location is in Northern Zimbabwe around Lake Kariba, which is the second largest man-made lake in the world.

The projects will include the impact of Internet on education at rural villages as well as projects studying the environment and animal life in the area. Further studies will consider the design of databases for local hospital health care and the effects of peak hour energy uses from the Lake Kariba dam.

We will work closely with the University of Zimbabwe, and will have students from there as part of our project teams. Before starting the projects, students will participate in a PQP with their on-site advisor, including an African studies program. Housing and transportation are arranged at a special campground with round-houses for each group of three students.

Africa is the largest and oldest continent in the world. The country of Zimbabwe has been peaceful for twenty years and still carries many of the English customs from when it was known as Rhodesia. The official unifying language is English and the particular part of the country where our project site is located is reputed to be one of the most beautiful in the world and not yet spoiled by technology.

Students take a PQP that is spread over the two terms before they leave for Zimbabwe.

AUSTRALIA PROJECT PROGRAM

Directors: Prof. M. Ward, Fuller Laboratory 134
Prof. J. Barnett, Higgins Laboratory 105

WPI’s Australia Project Program, based in the city of Melbourne, operates in Term D each year. As this is a relatively new project site, the project topics in Melbourne may change significantly from year to year. Current sponsors include the Fire Protection Association of Australia, the Department of Human Services, the Commonwealth Scientific and Industrial Research Organization and Arup Fire, a local engineering consulting firm.

Melbourne, situated along Australia’s southeast coast, is the country’s second largest city. It is a city of parks and gardens, specializing in arts festivals, sporting events, and fine dining. It was voted “the world’s most livable city” in the international survey. Melbourne is also a fine place from which to explore the diversity of Australian life, being a short distance from mountains, deserts, beaches, mining towns, and extensive parklands and wildlife reserves.

It is anticipated that opportunities will exist for some satellite projects, without a resident WPI faculty member, in Darwin and possibly other major Australian cities.

Students will normally complete two 1/6 unit PQP activities. These will normally be completed in terms B and C.

Students will work in teams of three or four with a resident WPI faculty member, on projects at the sponsoring organization for the entire seven-week term. Student housing and project assignments are arranged in advance. Selection of students for this program takes place in Term B for the following academic year.
LIVING MUSEUMS PROGRAM

Prof. J. Hanlan, Salisbury 23

The Living Museums Program provides students with unusual opportunities to carry out IQP projects at a number of the culturally rich and varied museums of New England. Museums synthesize knowledge and combine artifacts with primary and secondary documents, often to create an entire social and physical environment. Thus, as students work with professional staff, documents, and artifacts at museum sites, they will gain an understanding of the past and present, and begin to see how the various aspects of human life fit together to form a specific culture. At the outstanding museums participating in the program, students can select projects from a varied list of areas ranging from medieval warfare at the Higgins Armory Museum in Worcester to the rich history and literary culture of Concord, MA, at the Concord Museum and the Thoreau Lyceum.

Special projects are available each summer in Term E at several museums and historical institutions such as: Mechanics Hall, Worcester, MA; the Worcester Historical Museum; Fruitlands Museum in Harvard, MA and Higgins Armory Museum.

GENDER, RACE, AND TECHNOLOGY

Prof. S. Vernon-Gerstenfeld, Project Center

Student projects in this program research issues in two general areas: (a) the participation of women and people of color in engineering and science education and in engineering professions, and (b) the effects of particular technologies on women, African Americans, Hispanics, Native Americans, and other specific racial or ethnic groups.

Projects are often coadvised, with one advisor from humanities or social science, and one advisor from science, engineering, or computer science disciplines.

Past and ongoing project topic areas include:
- effects of automation on office workers
- women in science and engineering professions
- underrepresented groups in science and engineering professions
- sex differences in learning styles in technical subjects
- ethics and reproductive technologies
- science and math education for precollege Native Americans, Hispanics and African Americans.

Project ideas in these or other areas related to gender, race, and technology can be initiated by students or faculty. For more information, contact Prof. Susan Vernon-Gerstenfeld, Project Center 216.

SCHOOL-COLLEGE COLLABORATION IN MATHEMATICS AND SCIENCE EDUCATION

Assistant Provost Lance Schachterle, Boynton Hall

WPI students and faculty, with the cooperation of public and private school teachers, have the opportunity to conduct and evaluate many new methods of teaching in the primary and secondary schools through IQPs on diverse educational topics. Given WPI’s mission as an educational institution in science, engineering and management, many IQPs involve experimentation in new ways of teaching mathematics and science in the classroom. In recent years, WPI students have been active, for example, in trying new approaches to computer education, in introducing “hands-on” science education, new computer-based mathematics programs, and in presenting basic engineering to high school students. To make these IQPs of the greatest use to schools, WPI welcomes formal and informal contacts with public school administrations.

AWARDS AND SCHOLARSHIPS

THE PRESIDENT’S IQP AWARDS

The President’s IQP Awards have been established to encourage and recognize meritorious accomplishment in the performance of the Interactive Qualifying Project. To be considered for an award, the IQP, while of overall good quality, should be outstanding in conception, execution, and presentation. There are no predetermined categories for the awards, but the award will recognize the qualities in which the project excels. By thus calling attention to projects which are deemed to be outstanding, the awards help to establish standards for exceptional quality in IQPs.

Each award consists of a certificate of merit to each student and an honorarium. The IQP awards competition is conducted each fall. For further information, see Dean Paul Davis, IGSD Office, Project Center.

THE PROVOST’S MQP AWARDS

The Provost of WPI conducts an annual competition to recognize several project teams in each discipline whose MQPs, in the view of the judges, have been unusually innovative, well executed, and well presented. To qualify as a contestant, the student team must be identified by the department of the team as one of the best presenters in the department oral competition. For more information, contact Assistant Provost Lance Schachterle in Boynton Hall.
The word “Sufficiency” usually designates the WPI humanities and arts degree requirement. It indicates a thematically related course and project sequence “sufficient” to give students an idea of how knowledge is obtained and expressed in a non-technical discipline.

Rather than offer merely an impression of many different areas of the humanities and arts, the WPI Plan calls for a meaningful grasp of a single thematic topic or a single discipline. The Sufficiency is not equivalent to fulfilling a distribution requirement by passing a certain number of unrelated courses. Instead, courses are taken in a chosen area of the humanities or arts, or they are focused on a theme that combines more than one area. They culminate in a final independent study, in which the student begins to do original work in an aspect of the humanities or arts.

The culmination of each student-selected sequence will be an independent study, producing a critical or research essay or, in combination with an analysis, short stories, poems, works of music or musical performances, visual art, or dramatic performances. (See also “Foreign Language Sufficiency” exception.) The final accomplishment must sum up the previous work in the humanities and arts not only by drawing upon what has been learned in previous work, but also by exploring new territory. The goal is to give the student enough background in one area of the humanities and arts so that—just as a student with an engineering or science major gains insight into how human creativity is exercised in such fields—in fulfilling the Sufficiency, the student learns how the mind creates, appreciates and criticizes work in the humanities and arts.

Most WPI students fulfill the Sufficiency by “overall evaluation of two units of work” as described below; however, for students exceptionally well prepared already in an area of the humanities or arts, the requirement may be fulfilled by passing the “Sufficiency Examination,” also described below.

REQUIREMENT MET BY “OVERALL EVALUATION OF TWO UNITS OF WORK”

Students normally fulfill the humanities and arts degree requirement by completing two units of work consisting of five student-selected, thematically related courses or independent studies (each for 1/3 unit of credit) of increasing complexity. These courses culminate in the final 1/3 unit of independent study dealing with the theme running through the previous work. The theme of the Sufficiency project may derive from a single discipline or may draw upon ideas or use analytic tools from more than one humanities and arts discipline.

The faculty member advising the final independent study will certify that the student’s theme is consistent with previous work. Evaluation of this final independent study, which will be based on a research essay or on creative works or performance accompanied by analysis or participation in a seminar, will result in the final grade for the Sufficiency as a degree requirement. (See “Foreign Language Sufficiency” exception.) Students and faculty members should make clear at the outset of the final independent study what specific means of evaluation will be used for the culmination of the Sufficiency.

Advice and guidelines for the setting up of Sufficiency themes are available from department members as listed on pages 52 and 199. However, responsibility for the selection of specific courses leading to the final independent study rests ultimately with the student. Students are, therefore, urged to consult with a Humanities and Arts Department faculty member about possible final themes for the Sufficiency no later than the beginning of their third course in humanities and arts. Such early discussion of possible thematic topics enables students to plan effectively for additional work and strengthens greatly the cohesiveness of the final independent study.

A file (filed by advisor’s name) of all essays and portfolios accepted in completion of the Sufficiency in the previous academic year is available in the Humanities and Arts Department office. Students wishing to see what kinds of topics have been completed previously and how they relate to course work should examine examples of essays in areas of interest to them.

TRANSFER STUDENTS AND THE SUFFICIENCY REQUIREMENT

Transfer credit in the Humanities and Arts at WPI is granted on a course-for-course basis. All Transfer and 3-2 Program students entering WPI with fewer than six courses or their equivalent of transfer credit in the Humanities and Arts must complete thematically-related work in the Humanities and Arts, including a Sufficiency evaluation (#5 Independent Study/Project) to the extent that the overall Humanities and Arts credit totals two units.

No credit toward the Humanities and Arts requirement is given for introductory-level foreign-language courses unless the entire Sufficiency program is in that foreign language. Usually only one transfer course in Freshman English can be applied toward the Sufficiency requirement. In all cases, the Humanities and Arts Consultant who will serve as the advisor of the student’s #5 IS/P (“Sufficiency”) has the final decision on what courses are acceptable within the student’s Sufficiency sequence leading up to the project. Up to one unit (i.e. three courses) of transferred work in the Humanities and Arts that is not credited toward the Humanities and Arts Requirement can be credited toward the fifteen-unit graduation requirement; such courses shall receive credit under the category of EL 1000.

If a Transfer or 3-2 Program student has completed two units of acceptable college-level work in the Humanities and Arts prior to entering WPI, a Completion of Degree Requirement form will be submitted by the Humanities and Arts Department Coordinator for Transfer Students at the request of the student. The grade for such a Humanities and Arts Requirement met by transfer credit is normally a B or C, but a student can request a grade of “CR”. Students whose grades on transferred courses average A can submit samples of their course work and may be awarded an A for the Humanities and Arts Sufficiency Requirement. Alternately a transfer student may elect to undertake a #5 Sufficiency IS/P in an effort to achieve an A grade. These evaluation options must be exercised prior to the Department’s submission of the Completion of Degree Requirement form to the Registrar.
Decisions concerning credit toward the Humanities and Arts requirement are made by the Humanities and Arts Coordinator for Transfer Students, Professor Patrick Dunn. He can be contacted in room 26 of Salisbury Laboratories, or at extension 5584, or email pdunn@wpi.edu.

DEVELOPING A SUFFICIENCY PROGRAM IN HUMANITIES AND ARTS

The Humanities and Arts department offers most of its courses at the 1000-, 2000-, and 3000-level. Students are strongly encouraged to include one 1000-level course, two 2000-level courses, and one or more 3000-level courses in their program of five humanities and arts courses prior to their Sufficiency project term. Since the 1000-level courses may prove useful in developing a sense of what constitutes a theme in an area of the humanities or arts, the Department will accept two 1000-level courses toward the final Sufficiency project, as long as one of the courses involves material thematically related to that project. This progression through an area of study offers the student an opportunity to build an intellectual understanding of a subject while acquiring a cohesive broadening of knowledge that will lead to a challenging and rewarding Sufficiency program.

1000-Level Courses
Courses on this level introduce a discipline through exploration of available resources and research techniques, identification of critical issues, and examination of major themes, ideas, and interpretations.

2000-Level Courses
Courses on this level enhance both the knowledge and understanding of an area of study through concentration on specific themes, ideas, or approaches and refinement of expressive and analytic skills.

3000-Level Courses
Courses on this level, offered in a seminar format, focus on the application of those critical and analytical skills developed in lower-level courses, leading students to well defined Sufficiency project topics.

AREAS FOR THE SUFFICIENCY IN HUMANITIES AND ARTS

In developing the Sufficiency requirement (see the “Humanities and Arts Sufficiency” section, page 20), students will choose courses from traditional academic disciplines within the broad area of the humanities and arts at WPI. The Sufficiency program may be limited to courses in a single discipline, such as European history or English literature, or it may include more than one discipline and involve courses, for example, in the history, literature and philosophy of a particular period. In both cases, it is essential that a single “theme,” derived from the various courses, be developed in the final Independent Study/Project (IS/P). Students are urged, before or during their third course in the sequence, to consult with a Humanities and Arts faculty member regarding their intended final IS/P.

A descriptive listing of the humanities/arts disciplines follows.

AM—AMERICAN STUDIES
Students considering Sufficiencies in American Studies may begin with HU 1411, Introduction to American Studies, or may include that course early in their sequence. American Studies is an interdisciplinary Sufficiency program. Students should select courses from the areas of literature (EN), history (HI), philosophy (PY), religion (RE), art history and architecture (AR), and music (MU) and should, in the final Sufficiency project, investigate an American theme which derives from the courses selected.

AR—ART HISTORY/ARCHITECTURE
Students considering Sufficiencies in the history of art or architecture should begin with AR 1111, Introduction to Art History, or the 2000-level course offerings in modern art or architecture. Another WPI course relevant to an art Sufficiency is AR/ID 3150, Light, Vision, and understanding, which relates painting to the history and philoso-
These are the “1000” or “2000” level courses from which most students select their first Humanities and Arts elective.

Art History and Architecture

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 1111</td>
<td>Introduction to Art History</td>
</tr>
</tbody>
</table>

English

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1221</td>
<td>Introduction to Drama: Theatre on the Page and on the Stage</td>
</tr>
<tr>
<td>EN 1222</td>
<td>Shakespearean Sampler</td>
</tr>
<tr>
<td>EN 1231</td>
<td>Introduction to American Literature and Culture</td>
</tr>
<tr>
<td>EN 1242</td>
<td>Introduction to English Poetry</td>
</tr>
<tr>
<td>EN 1251</td>
<td>Introduction to Literature</td>
</tr>
<tr>
<td>EN 1257</td>
<td>Introduction to African American Literature and Culture</td>
</tr>
<tr>
<td>EN 2211</td>
<td>Elements of Writing</td>
</tr>
</tbody>
</table>

Foreign Language

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GN 1511, 1512</td>
<td>Elementary German I,II</td>
</tr>
<tr>
<td>GN 2511, 2512</td>
<td>Intermediate German I,II</td>
</tr>
<tr>
<td>SP 1523, 1524</td>
<td>Elementary Spanish I,II</td>
</tr>
<tr>
<td>SP 2521, 2522</td>
<td>Intermediate Spanish I,II</td>
</tr>
</tbody>
</table>

History

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI 1311</td>
<td>Introduction to American Urban History</td>
</tr>
<tr>
<td>HI 1312</td>
<td>Introduction to American Social History</td>
</tr>
<tr>
<td>HI 1313</td>
<td>Introduction to the Study of Foreign Policy and Diplomatic History</td>
</tr>
<tr>
<td>HI 1314</td>
<td>Introduction to Early American History</td>
</tr>
<tr>
<td>HI 1321</td>
<td>Introduction to European Economic and Social History</td>
</tr>
<tr>
<td>HI 1322</td>
<td>Introduction to European Cultural and Social History</td>
</tr>
<tr>
<td>HI 1323</td>
<td>Introduction to Russian/Soviet History</td>
</tr>
<tr>
<td>HI 1331</td>
<td>Introduction to the History of Science</td>
</tr>
<tr>
<td>HI 1332</td>
<td>Introduction to the History of Technology</td>
</tr>
<tr>
<td>HI 1341</td>
<td>Introduction to Global History</td>
</tr>
</tbody>
</table>

Interdisciplinary

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU 1411</td>
<td>Introduction to American Studies (II)*</td>
</tr>
<tr>
<td>HU 1412</td>
<td>Introduction to Asia</td>
</tr>
</tbody>
</table>

For International Students

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS 1811</td>
<td>Writing for International Students</td>
</tr>
<tr>
<td>IS 1812</td>
<td>Speech for International Students</td>
</tr>
<tr>
<td>IS 1813</td>
<td>American History for International Students</td>
</tr>
</tbody>
</table>

Music

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU 1611</td>
<td>Fundamentals of Music I</td>
</tr>
</tbody>
</table>

Philosophy and Religion

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY/RE 1731</td>
<td>Introduction to Philosophy and Religion</td>
</tr>
</tbody>
</table>

*Offered in alternate years.
phy of science. A variety of independent studies are also available. Students are encouraged to consider studio art courses and some of the more specific upper-level courses in the arts offered elsewhere in the Worcester Consortium, especially at Clark University and the College of the Holy Cross (catalogs available at Gordon Library).

EN—LITERATURE (INCLUDING DRAMA/THEATRE)
Students selecting Sufficiencies in literature may begin by selecting any of the 1000- or 2000-level EN courses. Subsequent courses may emphasize American or British literature, drama/theatre, fiction or poetry, or any mixture of these; or subsequent courses may seek to define themes involving any other humanities and arts disciplines. However, in every case students should consider with care how the first five courses are preparing them to define and develop a theme in their final Sufficiency independent study.

FOREIGN LANGUAGES
For a description of Sufficiencies in German, Spanish, and in other foreign languages, see below.

GS—GLOBAL STUDIES
Students considering Sufficiencies in Global Studies may begin with HI 1341 Introduction to Global History, or may include that course early in their sequence. Global Studies is an interdisciplinary Sufficiency program. Students should select courses from the areas of: literature (EN); foreign language, civilization and literature (SP, GN); history (HI); philosophy (PY); religion (RE); art history and architecture (AR); and music (MU). In the final Sufficiency project, they should investigate an issue from a global perspective that derives from the courses selected.

HI—HISTORY (INCLUDING HISTORY OF SCIENCE AND TECHNOLOGY)
Students selecting Sufficiencies in history may begin by taking any of the 1000- or 2000-level HI courses. Subsequent courses may emphasize history in the following categories: general, cultural, diplomatic, intellectual, psychological, social, science and technology, or any mixture of these. Subsequent courses may also seek to define themes involving any other humanities and arts discipline.

In any event, students should consider carefully how the five courses are preparing them to define and develop a theme in their final Sufficiency independent study.

HU—HUMANITIES
Courses in a variety of topics are listed under the general title of Humanities; many of these could be used in interdisciplinary Sufficiency themes or related to conventional disciplinary themes in several areas.

MU—MUSIC
Individual music courses are available to any interested WPI student, and private instruction is available in both voice and musical instruments. However, for those planning a Sufficiency in music (involving five courses and a final IS/P), a minimal level of music capability on the student’s part is assumed.

For Sufficiency students, MU 1611 and MU 2611, Fundamentals of Music I and II (or the equivalent knowledge) should be completed early in students’ musical course work. The Sufficiency’s purpose is to acquaint students with the basic vocabulary of music (in Fundamentals); with aspects of music history (in the 2000 courses), and with areas of special interest, which might include performance work in ensembles or in private lessons, independent study (such as composition or theory, and computer music), or selected work at other Consortium institutions.

Also available to interested students are the following ensembles sponsored by the music faculty. Those listed here currently receive credit toward the music Sufficiency.

Choral	Men’s Glee Club
Choral	Women’s Chorale
Instrumental	Brass Ensemble
	Concert Band
	Jazz Band
	Stage Band
	Pep Band (football and basketball, athletic credit)
	Medwin String Ensemble

There is no sequential significance to courses above 2000; however, students should select five courses (or three beyond Fundamentals I and II) which give meaningful sequential significance to their particular musical interests, with the final IS/P reflecting the realization of these goals.

PY AND RE—PHILOSOPHY AND RELIGION
Students can follow a sequence of courses concentrating on either philosophy or religion, though a coherent combination of philosophy and religion courses is also possible. Students doing a Sufficiency in philosophy or religion will normally take three courses below the 3000 level before pursuing more advanced courses at the 3000 level. Since each individual 3000-level course is offered every other year, students should plan early the advanced topics they wish to pursue in order to organize their sequences around the year(s) in which are offered the 3000-level courses of particular interest to them. In planning their Sufficiency sequences, students might find it constructive to take humanities and arts courses outside philosophy or religion that relate to the theme of their Sufficiency.

PERFORMANCE SUFFICIENCY IN MUSIC
The final IS/P in music is available as a performance IS/P only with the written permission of a WPI faculty member in music. Such consent must be obtained before the beginning of the term in which the student is to perform. Performance Sufficiencies will be available only to students who can demonstrate an underlying knowledge of essential music theory and music history.

In addition to their performance, all students in a performance Sufficiency must submit a substantial essay that articulates how their academic knowledge of music was enhanced by the performance. The grade for the Sufficiency will be based on the level of both the performance recital and the essay.
PERFORMANCE SUFFICIENCY IN DRAMA/THEATRE

This type of project emerges when a student or a group of students initiate or take part in a production of a play, either as a part of the regularly scheduled Humanities and Arts Department productions, as a part of the MASQUE season of play productions, or in some alternative manner. In addition to the performance, each student must complete a substantial written document which reflects the performance work and demonstrates considerable knowledge of the area of expertise. Project advisors: Prof. S. Vick and Dean O'Donnell, Humanities and Arts.

THE EDINBURGH INTERNATIONAL FESTIVAL: SUMMER PROJECT OPPORTUNITIES IN SCOTLAND

The IGSD periodically cosponsors observational and research projects at the Edinburgh International Festival Fringe in conjunction with the Department of Humanities and Arts, Division of Drama/Theatre; Theatre and Technology Program, and MASQUE [the student drama organization].

For more information on credit and not for credit opportunities at the Edinburgh Festival, contact the Department of Humanities & Arts, Division of Drama/Theatre.

FOREIGN LANGUAGE SUFFICIENCY

Students who have taken some German or Spanish before coming to WPI should attend the foreign-language placement session during New Student Orientation to determine the appropriate level at which to begin the Sufficiency. Most students complete the Sufficiency in Foreign Language by passing six courses in the language. Students who can begin language study at WPI on or near the advanced level may complete the Sufficiency by writing a final IS/P in German or Spanish.

Students interested in a language other than German and Spanish can complete a Sufficiency in that language by taking courses offered by the Consortium. For further details see Prof. Dollenmayer, Alden Memorial 209.

FOREIGN LANGUAGE AND CIVILIZATION SUFFICIENCY

Students who wish to combine foreign language courses with other fields in the humanities and arts should note the following guidelines:

Students may supplement intermediate or advanced foreign language courses by completing their Sufficiencies in related humanities and arts fields that deal with the culture of that language and the countries where it is spoken. The final IS/P must be written in English. Note: Elementary courses in the foreign language do not count towards this Sufficiency.

For further details on foreign language courses and Sufficiencies, see Prof. Dollenmayer, Alden Memorial 209.

GUIDELINES FOR GRANTING TRANSFER CREDIT TO U.S. STUDENTS FOR FOREIGN LANGUAGE STUDY

A. Credit for study on the high school level:
1. Transfer credit of 1/3 unit is given for Advanced Placement with a score of 4 or 5.
2. Students with three or more years of foreign-language study in high school, but who have not taken the Advanced Placement examination in that language, may receive 1/3 unit credit for their high school language study upon satisfactory completion of two courses in the same language on the intermediate level or above. (Note: Courses in German and Spanish in addition to those offered at WPI, as well as courses in other languages, are available at other colleges in the Consortium.)
3. In either case 1. or 2. above, in order to receive 1/3 unit credit, students must begin their WPI course sequence at the Elementary II level or above.

B. Credit for study at other colleges and universities:
1. Language study which is done at other universities and colleges prior to entering WPI, or done with the prior written permission of the student’s Humanities and Arts Consultant (not the Department Head) as part of an agreed-upon Sufficiency sequence, transfers on a course-for-course basis.
2. Language study which is done at foreign universities, language institutes, cultural institutes, etc., prior to entering WPI, or done with the prior written permission of the student’s Humanities and Arts Consultant (not the Department Head) as part of an agreed-upon Sufficiency sequence, is assessed by the Foreign Languages Consultant on the basis of matriculation papers and the level or work accomplished.

GUIDELINES FOR GRANTING TRANSFER CREDIT TO INTERNATIONAL STUDENTS FOR FOREIGN LANGUAGE STUDY

In order to take full advantage of their opportunity to study in the U.S., international students whose native language is not English must fulfill their Sufficiency requirement through studies conducted in the English language. Therefore, no transfer credit toward the Sufficiency requirement is awarded automatically to such students for knowledge of languages other than English.

The above guidelines for U.S. students apply to international students whose native language is English.
SUFFICIENCY PROGRAM FOR HUMANITIES AND ARTS MAJORS

Students majoring in Humanities and Arts would normally fulfill the Sufficiency requirement in an engineering or science area. One of the primary responsibilities of the Humanities and Arts student will be to devise, with an advisor's help, a substantial program of scientific and technological studies leading to the completion of the Sufficiency requirement. Before developing their programs, students should have clearly in mind what career goals they wish to reach and should be prepared to schedule as many scientific courses as are needed to qualify them as literate in some area of technology. The minimum technological requirement for the student fulfilling the Sufficiency requirement by coursework is two units of study. Many career opportunities may demand more extensive preparation in technological disciplines, and students are strongly advised to take full advantage of WPI's resources in science, technology, and mathematics by pursuing the Sufficiency well beyond the minimum requirement.

Areas Available

<table>
<thead>
<tr>
<th>Science and Engineering</th>
<th>Faculty Consultants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology and Biotechnology</td>
<td>R. Cheetham</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>C. Sotak</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>D. DiBiaso</td>
</tr>
<tr>
<td>Chemistry and Biochemistry</td>
<td>J. Dittami</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>F. Hart</td>
</tr>
<tr>
<td>Computer Science</td>
<td>L. Becker</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>F. Looft</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>S. Johnson</td>
</tr>
<tr>
<td>Interdisciplinary Studies</td>
<td>R. Vaz</td>
</tr>
<tr>
<td>Mathematical Sciences</td>
<td>H. Walker</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>R. Sisson</td>
</tr>
<tr>
<td>Physics</td>
<td>T. Keil</td>
</tr>
</tbody>
</table>

SUFFICIENCY PROGRAM FOR INTERNATIONAL STUDENTS

In order to take full advantage of their opportunity to study in the United States, all international students whose native language is not English must fulfill their Sufficiency requirement through studies conducted in the English language. Exceptions to this policy may be made by the Consultant for Sufficiencies for International Students (CSIS), in the case of students who have had extensive educational experience in the English language, e.g., English-speaking secondary school. The actual sequence of courses should be determined with the advice of the Consultant for Sufficiencies for International Students. Two approaches are suggested:

BASIC SUFFICIENCY FOR INTERNATIONAL STUDENTS

Students whose command of the English language is not on the level of that of an undergraduate whose native language is English should begin their program by successfully completing IS 1811 (Writing for Non-native Speakers of English) and IS 1812 (Speech for Non-native Speakers of English). They may then choose three other courses in Art, English, History, Music, or Philosophy/Religion by arrangement with the Consultant (CSIS). Especially appropriate are the various Humanities Concepts courses and IS 1813, American History for International Students. The final Sufficiency project may be done with any Department member who agrees to advise the topic.

THEMATIC SUFFICIENCY FOR INTERNATIONAL STUDENTS

Students who believe that their command of English is sufficient to begin work on the level of the undergraduate whose native language is English should, with the advice of the Consultant (CSIS), select a first course in an area of their likely interest for the final Sufficiency project. Students passing this first course should proceed through the regular Sufficiency sequence leading to a final project with any Department member who agrees to advise their work. If students do not pass this first course, and the instructor in consultation with the Consultant determines that inadequate proficiency in English was a factor, then such students should proceed through the basic Sufficiency for International students outlined above.

OTHER OPTIONS

SOCIAL SCIENCE COURSES

Humanities and Arts Sufficiency project advisors may allow students to include one social science course in their Sufficiency sequence on the basis of that course's suitability to the development of students' particular humanities themes.

Such a course must be more than "related to" or "in support of" a given theme. It must be at the interface of humanities (normally history) and blend in with certain Humanities and Arts courses. A course in American government, for example, could logically be included in any Humanities and Arts Sufficiency project.

The final Sufficiency project may be done with any Department member who agrees to advise the topic. One of the following social science courses (and no other) may be included in the Humanities and Arts Sufficiency sequence:

- SS 1301 U.S. Government
- SS 1402 Introduction to Social Psychology
- SS 2207 Creativity and the Scientific Community
- SS 2208 The Society - Technology Debate

INTERDISCIPLINARY SUFFICIENCY AT THE AMERICAN ANTIQUARIAN SOCIETY

A unique opportunity for interdisciplinary work in the humanities and arts is offered by the American Studies Seminar sponsored each fall by the American Antiquarian Society. Organized in collaboration with Worcester's five undergraduate colleges and universities, this seminar focuses on topics that allow students to investigate the Society's rich holdings in early American history, literature, and culture. The Society's unparalleled collection of
Social science deals with the behavior of individuals and groups as well as the functioning of the economic and political systems and institutions that shape and control our lives. As such, it offers a perspective that is essential for anyone desiring a well-rounded education.

Therefore, WPI, in common with other colleges, requires some exposure to the social sciences for its graduates. In satisfying the two-course social science requirement, students are free to take courses in any of the traditional social sciences: economics, political science, sociology, psychology, and anthropology. The social science courses offered at WPI are grouped into two broad categories. The first consists of core courses that introduce students to the social sciences and help them understand the scope and limits of social science approaches and how they might be related to the design of Interactive Qualifying Projects. The second, more advanced, set of courses looks in depth at particular issues and problems, providing students with a more detailed understanding of social science disciplines and their use in social problem solving and interactive projects. The relationship between the core courses and the more advanced courses in specific areas is illustrated by means of the diagram on page 140.

To obtain maximum benefit from their study of social science, students may be required to present an oral report at the conclusion of the project; under normal circumstances, students must complete the project within one term in order to receive the full unit of credit.

Format:
- The configuration of the off-site project is flexible. It may include theatre-study and performance, or the history of a given locale, or its culture. Models proposed so far include (a) London theatre project; (b) History and Culture of Modern France; (c) Season of London’s Music Performance; (d) Use of the National Archives to study American History, Culture and Literature.
- Only members of the Humanities and Arts faculty at WPI may advise off-site Humanities and Arts projects.

Possible Off-Site Locations:
- In cooperation with the Project Center, faculty may conduct off-site Humanities and Arts Sufficiency projects at already established IQP project centers, such as London, Venice, Washington, San Francisco, or San Juan. Faculty may arrange to conduct projects at other locations as well.

Advantages:
- The new Off-Site Option adds flexibility to the program, increases the educational opportunities for students, brings faculty and students together in an intensive, cooperative educational activity, contributes to the WPI’s Global program, and helps to meet the goal of the Strategic Plan to increase the number of undergraduates completing off-campus projects.
Awards and prizes are determined by the academic department or by selected committees.

COLLEGE AWARDS

SALISBURY PRIZE AWARDS
These historic awards are made to 14 highly meritorious seniors. These awards were established by Stephen Salisbury, a WPI founder and former president of the Board of Trustees.

TWO TOWERS PRIZE
This prize is awarded to the student who, through general academic competence, campus leadership, regular course work and special work in research and projects, best exemplifies a combined proficiency in the theoretical and practical union implicit in the Two Towers concept, which is at the heart of WPI's Two Towers tradition.

SIGMA XI AWARDS IN ENGINEERING AND SCIENCE
These awards in engineering and science are given to the students and their advisors for the Major Qualifying Projects which are judged to be the best in originality, contribution to the field, professional competence, and for the most useful applications.

PRESIDENT’S IQP AWARDS
These awards are given to those students and student teams whose conception, performance, and presentation of their Interactive Qualifying Projects have been judged outstanding in focusing on the relationships among science, technology, and the needs of society.

PROVOST’S MQP AWARDS
These awards offer recognition to those students who have completed outstanding Major Qualifying Projects as a demonstration of their competency in a chosen academic discipline. Each academic department conducts its own competition to select the winners.

UNITED TECHNOLOGIES CORPORATION MINORITY AWARD
This award is presented to an outstanding minority undergraduate student.

OUTSTANDING WOMEN STUDENT AWARDS
Marietta E. Anderson Award, an award which is presented to the most outstanding woman student in one of the three lower classes who not only has a superior academic record, but also has been a work-study student, participated in recognized extracurricular activities, and has been a volunteer for college-sponsored activities.

United Technologies Corporation and the Society of Women Engineers Award
This award is presented to an outstanding woman undergraduate student.

Funds from an anonymous donor provide the following awards to women students preparing for careers in engineering or science. Awards are based on academic excellence, contributions to the WPI community, and professional goals. The awards are named each year for women who have played significant roles at WPI.

Bonnie-Blanche Schoonover Award, honoring WPI’s former librarian.

Ellen Knott Award, honoring a long-time secretary in the Mechanical Engineering Department.

Gertrude R. Rugg Award, honoring WPI’s late Registrar Emerita.

WILMER L. AND MARGARET M. KRANICH PRIZE
Students who are seniors or completing their junior year will be nominated by faculty for the annual award. The award will go to a student majoring in engineering, science or management who best exemplifies excellence in the humanities and in the full integration of humanities into his/her undergraduate experience. Double-majors who fulfill one major in Humanities and Arts are not eligible.

SPECIAL AWARDS

ALPHA PHI OMEGA SERVICE AWARD

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS CERTIFICATE FOR SERVICE

Mechanical Engineering

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPERS CONTEST AWARD

Mechanical Engineering

AMERICAN INSTITUTE OF CHEMISTS FOUNDATION

Chemistry and Biochemistry

An award by the New England chapter of the American Institute of Chemists to honor outstanding seniors majoring in chemistry and biochemistry.

AMERICAN SOCIETY FOR METALS: CHESTER M. INMAN '14 OUTSTANDING STUDENT AWARD

Mechanical Engineering

The Worcester Chapter of the American Society for Metals presents $200 to a student for excellence in a Major Qualifying Project dealing with processing or materials science.

ASME CERTIFICATE FOR SERVICE

Mechanical Engineering

This honor is given by national ASME headquarters in recognition of outstanding effort and accomplishment on behalf of the ASME Student Section at WPI.
ASME PAPERS CONTEST AWARD
Mechanical Engineering
The Worcester section of the American Society of Mechanical Engineers presents this award to winners of the ASME Student Papers Contest.

CENTRAL NEW ENGLAND AICHE AWARD FOR SIGNIFICANT CONTRIBUTION
Chemical Engineering
This award is given to an individual in recognition of significant contributions to the American Institute of Chemical Engineers.

CLASS OF 1879 PRIZE FOR OUTSTANDING PROJECTS IN THE HUMANITIES
Humanities and Arts
This prize is awarded by the Humanities and Arts Department each year to three students for excellent work in Humanities and Arts Sufficiency projects. Sufficiencies must demonstrate exceptional creativity and skill in conceiving, developing and expressing a theme within any discipline in the humanities and arts.

COM r vMUNITY SERVICE AWARD PRESENTED IN THE MEMORY OF EDWIN B. COGHLIN '23
Alumni Office
This award recognizes individuals who have demonstrated an extraordinary personal commitment above and beyond their normal involvement on campus in both academic and extracurricular activities.

COMPUTER SCIENCE OUTSTANDING SENIOR AWARD
Computer Science
This award is presented to one or more computer science seniors who have an outstanding record and who have contributed to the enrichment and professional development of fellow students.

JAMES F. DANIELELLI AWARD
Biology & Biotechnology
This award, given by the Department of Biology and Biotechnology in cooperation with the Bio Club, honors the memory of Dr. James F. Danielli, a former department head and world-famous scholar.

FRANK D. DEFALCO AWARD
Civil & Environmental Engineering
Award to WPI undergraduate Civil Engineering students who has completed two and one half years towards a B.S., interested in career constructed facilities and a member of ASCE student chapter.

ETA KAPPA NU OUTSTANDING STUDENT AWARD
Electrical & Computer Engineering
The electrical and computer engineering honor society presents this award to the outstanding senior and junior in recognition of their academic achievement and their service to the WPI community.

GENERAL CHEMISTRY ACHIEVEMENT AWARD
Chemistry and Biochemistry
This award is given to the student who has completed the freshman chemistry course with superior academic performance. Department award.

ALLAN GLAZER AWARD
Mechanical Engineering
Established in 1992 by the family and friends of Allan Glazer '47, this award is given to a sophomore or junior majoring in mechanical engineering who has demonstrated outstanding academic achievement, special ingenuity in problem solving, and enthusiasm for engineering challenges.

GOAT’S HEAD AWARD FOR OUTSTANDING CONTRIBUTION TO THE STUDENT GOVERNMENT ASSOCIATION
Student Government Association

THE ROBERT H. GODDARD AWARD
Physics
Established by the classes of 1908 and 1909 as a memorial to Dr. Goddard, this prize is awarded for outstanding achievement, scholarship, consistent effort and dedication of purpose in both theoretical and experimental areas of physics.

HEALD BROTHERS SCHOLARSHIP
Mechanical Engineering
This FULL TUITION scholarship identifies and supports outstanding young men and women who represent, in modern form, the spirit of “Yankee Ingenuity” that characterizes the evolution of the great manufacturing enterprises from the beginnings of the American Industrial Revolution.

ANDREW HOLT MEMORIAL AWARD
Civil and Environmental Engineering
This award is presented to a civil engineering senior who has consistently earned academic honors and who shows excellent promise for success.

STEVEN J. KAHN AWARD
Humanities & Arts
This award is presented to the outstanding senior in the WPI Glee Club in recognition of his contribution, commitment, and unwavering loyalty to the organization.

THE WILLARD ELLIOT LAWTON-SAMUEL JAMES PLIMPTON AWARD
Physics
Established in honor of Professors Lawton and Plimpton, this award is presented to a student who has shown improvement in scholarship, not only in grades but also in depth of understanding.
LINCOLN ARC WELDING FOUNDATION AWARD
Civil and Environmental Engineering
This award recognizes outstanding achievement in solving
design, engineering, fabrication, and research problems.

THE ALFRED R. AND JANET H. POTVIN AWARD
Biomedical Engineering
Separate awards are given to the outstanding under-
graduate and graduate student in Biomedical Engineer-
ing in recognition of their academic performance and
their service to WPI and/or the outside community.

MANAGEMENT EXCELLENCE AWARD
Management
This award is given to one or more seniors who have
demonstrated ability in courses and projects and who ex-
hibits outstanding promise of future success in the field of
management engineering.

CARL F. MEYER IMPROVEMENT AWARD IN CIVIL ENGINEERING
Civil & Environmental Engineering
Established by Professor Emeritus Meyer, this award is
presented to the civil engineering senior who has demon-
strated the most improvement in academic and profes-
sional attitude since entering the department.

RICHARD V. OLSON AWARD
Mathematical Sciences
Established to honor the memory of mathematics Profes-
sor Richard V. Olson, this annual award to a WPI sopho-
more recognizes outstanding performance in basic
mathematics courses.

EDWARD C. PERRY AWARD
Mechanical Engineering
This award is given annually to an engineering student or
students for an outstanding project in the area of mechanical
design. The award is made possible through a bequest
from Miriam Perry Goll and honors the memory of her fa-
thor, Edward C. Perry ’04, a design engineer with General
Electric Company throughout his professional career.

PI TAU SIGMA AWARD FOR EXCELLENCE
Mechanical Engineering
The mechanical engineering honor society, Pi Tau Sigma,
presents this award to the outstanding junior mechanical
engineering student.

SENIOR MATHEMATICAL SCIENCES MAJOR AWARD
Mathematical Sciences
This award is presented to the senior mathematical sci-
ences major who has shown outstanding performance
and who has made valuable contributions to the WPI
mathematical community.

SOCIETY OF MANUFACTURING ENGINEERING SCHOLARS AWARDS
Mechanical Engineering

SOCIETY OF MANUFACTURING ENGINEERS OUTSTANDING STUDENT SERVICE AWARD
Mechanical Engineering

JON CALVERT STRAUSS AWARD FOR EXCELLENCE IN COMPUTER SCIENCE
Computer Science
This award is presented to a computer science junior who
has an excellent academic record and who shows promise
for continuing success.

STUDENT-ALUMNI INTERACTION AWARD
Alumni Office
This award is presented by the WPI Alumni Association
in recognition of individuals who, through their involve-
ment on campus, have facilitated the continuing develop-
ment of interaction between students and alumni.
Recipients are full-time undergraduate students who
have demonstrated extraordinary personal commitment
to WPI and the Alumni Association above and beyond
the normal involvement on campus.
The award is designed to recognize students who have
stepped forward to become leaders in the alumni and stu-
dent communities and, in doing so, have benefited both
WPI students and alumni in a unique and purposeful way.

CHARLES O. THOMPSON SCHOLARS
Academic Advising
Named in honor of the first president of WPI, this honor
recognizes outstanding performance by first-year students.
To be eligible for membership, students must receive all
A’s and B’s, with a minimum of six A’s, in their academic
subjects during the first three terms at WPI. Selections are
made in Term D.

ACS UNDERGRADUATE AWARD IN ANALYTICAL CHEMISTRY
Chemistry and Biochemistry
Award which is intended to encourage student interest in
analytical chemistry and to recognize a student who dis-
plays an aptitude for a career in the field. This award is for
third-year students.

WALL STREET JOURNAL AWARD
Management
The Wall Street Journal presents this award to a senior with
an outstanding record of achievement.