Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-0131103-203307


Document Typethesis
Author NameDoshi, Punit Rameshchandra
Email Address punitdoshi at yahoo.com
URNetd-0131103-203307
TitleAdaptive Prefetching for Visual Data Exploration
DegreeMS
DepartmentComputer Science
Advisors
  • Elke A. Rundensteiner, Advisor
  • Matthew O. Ward, Advisor
  • Craig E. Wills, Reader
  • Keywords
  • Adaptive prefetching
  • Large-scale multivariate data visualization
  • Semantic caching
  • Hierarchical data exploration
  • Exploratory data analysis
  • Date of Presentation/Defense2003-01-16
    Availability unrestricted

    Abstract

    Loading of data from slow persistent memory (disk storage) to main memory represents a bottleneck for current interactive visual data exploration applications, especially when applied to huge volumnes of data. Semantic caching of queries at the client-side is a recently emerging technology that can significantly improve the performance of such systems, though it may not in all cases fully achieve the near real-time responsiveness required by such interactive applications. We hence propose to augment the semantic caching techniques by applying prefetching. That is, the system predicts the user's next requested data and loads the data into the cache as a background process before the next user request is made. Our experimental studies confirm that prefetching indeed achieves performance improvements for interactive visual data exploration. However, a given prefetching technique is not always able to correctly predict changes in a user's navigation pattern. Especially, as different users may have different navigation patterns, implying that the same strategy might fail for a new user. In this research, we tackle this shortcoming by utilizing the adaptation concept of strategy selection to allow the choice of prefetching strategy to change over time both across as well as within one user session. While other adaptive prefetching research has focused on refining a single strategy, we instead have developed a framework that facilitates strategy selection. For this, we explored various metrics to measure performance of prefetching strategies in action and thus guide the adaptive selection process. This work is the first to study caching and prefetching in the context of visual data exploration. In particular, we have implemented and evaluated our proposed approach within XmdvTool, a free-ware visualization system for visually exploring hierarchical multivariate data. We have tested our technique on real user traces gathered by the logging tool of our system as well as on synthetic user traces. Our results confirm that our adaptive approach improves system performance by selecting a good combination of prefetching strategies that adapts to the user's changing navigation patterns.

    Files
  • punitd_thesis.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu