Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-0204104-125758


Document Typedissertation
Author NameLados, Diana Aida
URNetd-0204104-125758
TitleFatigue Crack Growth Mechanisms in Al-Si-Mg Alloys
DegreePhD
DepartmentMaterials Science & Engineering
Advisors
  • Diran Apelian, Advisor
  • Richard D. Sisson, Jr., Department Head
  • Makhlouf M. Makhlouf, Committee Member
  • Satya Shivkumar, Committee Member
  • Peggy E. Jones, Committee Member
  • Fred J. Major, Committee Member
  • Keywords
  • Microstructure
  • Elastic-Plastic Fracture Mechanics
  • Crack closure
  • A356
  • J-integral
  • Conventionally cast and SSM Al-Si-Mg alloys
  • Residual stress
  • Heat treatment
  • Fatigue crack growth mechanisms
  • Threshold stress intensity factor
  • Plastic zone
  • Paris law
  • Fracture toughness
  • Roughness
  • Date of Presentation/Defense2004-01-16
    Availability unrestricted

    Abstract

    Due to the increasing use of cyclically loaded cast aluminum components in automotive and aerospace applications, fatigue and fatigue crack growth characteristics of aluminum castings are of great interest. Despite the extensive research efforts dedicated to this topic, a fundamental, mechanistic understanding of these alloys’ behavior when subjected to dynamic loading is still lacking. This fundamental research investigated the mechanisms active at the microstructure level during dynamic loading and failure of conventionally cast and SSM Al-Si-Mg alloys. Five model alloys were cast to isolate the individual contribution of constituent phases on fatigue resistance. The major constituent phases, alpha-Al dendrites, Al/Si eutectic phase, and Mg-Si strengthening precipitates were mechanistically investigated to relate microstructure to near-threshold crack growth (Delta Kth) and crack propagation regimes (Regions II and III) for alloys of different Si composition/morphology, grain size, secondary dendrite arm spacing, heat treatment. A procedure to evaluate the actual fracture toughness from fatigue crack growth data was successfully developed based on a complex Elastic-Plastic-Fracture-Mechanics (EPFM/J-integral) approach. Residual stress-microstructure interactions, commonly overlooked by researches in the field, were also comprehensively defined and accounted for both experimentally and mathematically, and future revisions of ASTM E647 are expected.

    Files
  • lados.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu