Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-033010-141108


Document Typedissertation
Author NameBasu, Rajratan
URNetd-033010-141108
TitleDielectric Studies of Nanostructures and Directed Self-assembled Nanomaterials in Nematic Liquid Crystals
DegreePhD
DepartmentPhysics
Advisors
  • Germano S. Iannacchione, Advisor
  • P K Aravind, Committee Member
  • Jianyu liang, Committee Member
  • Keywords
  • Liquid Crystals
  • Carbon Nanotubes
  • Quantum Dots
  • Date of Presentation/Defense2010-03-30
    Availability unrestricted

    Abstract

    Self-assembly of nanomaterials over macroscopic dimensions and development of novel nano-electromechanical systems (NEMS) hold great promise for numerous nanotech applications. However, it has always been a great challenge to find a general route for controlled self-assembly of nanomaterials and generating electromechanical response at the nanoscale level. This work indicates that self-organized anisotropic nematic liquid crystals (LC) can be exploited for nanotemplating purposes to pattern carbon nanotubes (CNTs) and Quantum dots (QDs) over a macroscopic dimension. The pattern formed by the CNTs or QDs can be controlled by applying external electric and magnetic fields, developing novel nano-electromechanical and nano-magnetomechanical systems.

    Self-organizing nematic liquid crystals (LC) impart their orientational order onto dispersed carbon nanotubes (CNTs) and obtain CNT-self-assembly on a macroscopic dimension. The nanotubes-long axis, being coupled to the nematic director, enables orientational manipulation via the LC nematic reorientation. Electric field induced director rotation of a nematic LC+CNT system is of potential interest due to its possible application as a nano-electromechanical system. Electric field and temperature dependence of dielectric properties of an LC+CNT composite system have been investigated to understand the principles governing CNT-assembly mediated by the LC. In the LC+CNT nematic phase, the dielectric relaxation on removing the applied field follows a single exponential decay, exhibiting a faster decay response than the pure LC above a threshold field. Due to a strong LC-CNT anchoring energy and structural symmetry matching, CNT long axis follows the director field, possessing enhanced dielectric anisotropy of the LC media. This strong anchoring energy stabilizes local pseudo-nematic domains, resulting in nonzero dielectric anisotropy in the isotropic LC phase. These anisotropic domains respond to external electric fields and show intrinsic frequency response. The presence of these domains makes the isotropic phase electric field-responsive, giving rise to a large dielectric hysteresis effect. These polarized domains maintain local directors, and do not relax back to the original state on switching the field off, showing non-volatile electromechanical memory effect.

    Assembling quantum dots (QDs) into nanoscale configurations over macroscopic dimensions is an important goal to realizing their electro-optical potential. In this work, we present a detailed study of a pentylcyanobiphenyl liquid crystal (LC) and a CdS QD colloidal dispersion by probing the dielectric property  and relaxation as a function of an applied ac-electric field Eac. In principle, dispersing QDs in a nematic LC medium can direct the dots to align in nearly one-dimensional chain-like structures along the nematic director and these assemblies of QDs can be directed by external electric fields. In a uniform planar aligned cell, the FrĂ©edericksz switching of the LC+QDs appears as a two-step process with the same initial switching field as the bulk but with the final value larger than that for an aligned bulk LC. The relaxation of  immediately following the removal of Eac follows a single-exponential decay to its original value that is slower than the bulk but becomes progressively faster with increasing Eac, eventually saturating. These results suggest that the arrangement of the QDs is mediated by the LC.

    Files
  • Dissertation_Basu.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu