Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-040307-133151

Document Typethesis
Author NameAvila, Melissa Barter
Email Address melissa.avila at tycofp.com
TitleThe Effect of Resin Type and Glass Content on the Fire Engineering Properties of Typical FRP Composites
DepartmentFire Protection Engineering
  • Professor Nicholas A. Dembsey, Advisor
  • Dr. Patricia Beaulieu, Co-Advisor
  • Mr. Chris Lautenberger, Reader
  • Professor Ali S. Rangwala, Reader
  • Professor Kathy A. Notarianni, Department Head
  • Keywords
  • property estimation
  • composites
  • fire engineering properties
  • fire modelling
  • Date of Presentation/Defense2007-04-02
    Availability unrestricted


    This study is designed to provide the composites industry as well as the fire engineering industry baseline data for pyrolysis modelling of common fiber reinforced polymer (FRP) systems. Four resin systems and three glass contents will be considered. This matrix of FRP systems has been carefully fabricated and documented so as to provide “transparency” as to the system compositions. An important and interesting aspect of these FRP systems is that all the resins used are listed by the manufacturers as Class 1 or Class A per ASTM E 84. The FRP systems are being evaluated in bench scale modern fire test apparatuses (FPA, ASTM E 2058, and Cone, ASTM E 1354); detailed information on the FPA is provided. These apparatuses provide a range of measurements such as heat release rate that can be used to calculate engineering “properties” of these FRP systems. The “properties”, such as minimum heat flux for proper ignition (found to range from 20 to over 100 kW/m2) and the b flame spread parameter, can then be used to compare the fire performance (flashover potential) of these FRP systems according to resin type and glass content. Additional instrumentation has also been added to the specimens to allow surface and in-depth temperatures to be measured. The additional measurements are used to complete a set of data for pyrolysis modelling and for calculating thermal properties of the composites. The effect of environment oxygen concentration and flaming and non-flaming decomposition are investigated in terms of fundamental pyrolysis behavior of the FRP systems. A general conclusion is that the phenolic composite has better fire engineering “properties” than the polyester composite but the glass is the controlling component of the composite with regards to temperature profile and resulting thermal properties.

  • MAvila.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu