Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-040913-230643


Document Typethesis
Author NameWixon, Michael
URNetd-040913-230643
TitleDetecting students who are conducting inquiry Without Thinking Fastidiously (WTF) in the Context of Microworld Learning Environments
DegreeMS
DepartmentSocial Science & Policy Studies
Advisors
  • Janice D. Gobert, Advisor
  • Ryan S. J. d. Baker, Co-Advisor
  • Ivon Arroyo, Reader
  • Keywords
  • Automated Detectors
  • Cluster Analysis
  • Decision Tree Rule Learners
  • Machine Learning
  • Disengaged Behavior
  • Learner Characteristics
  • Science Inquiry
  • Date of Presentation/Defense2013-04-24
    Availability unrestricted

    Abstract

    In recent years, there has been increased interest and research on identifying the various ways that students can deviate from expected or desired patterns while using educational software. This includes research on gaming the system, player transformation, haphazard inquiry, and failure to use key features of the learning system. Detection of these sorts of behaviors has helped researchers to better understand these behaviors, thus allowing software designers to develop interventions that can remediate them and/or reduce their negative impacts on student learning. This work addresses two types of student disengagement: carelessness and a behavior we term WTF (“Without Thinking Fastidiously”) behavior. Carelessness is defined as not demonstrating a skill despite knowing it; we measured carelessness using a machine learned model. In WTF behavior, the student is interacting with the software, but their actions appear to have no relationship to the intended learning task. We discuss the detector development process, validate the detectors with human labels of the behavior, and discuss implications for understanding how and why students conduct inquiry without thinking fastidiously while learning in science inquiry microworlds. Following this work we explore the relationship between student learner characteristics and the aforementioned disengaged behaviors carelessness and WTF. Our goal was to develop a deeper understanding of which learner characteristics correlate to carelessness or WTF behavior. Our work examines three alternative methods for predicting carelessness and WTF behaviors from learner characteristics: simple correlations, k-means clustering, and decision tree rule learners.

    Files
  • Wixon_Thesis_ETD_FINAL_VERSION.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu