Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-042709-134959


Document Typethesis
Author NameLiang, Haodong
URNetd-042709-134959
TitleOn the Constructions of Certain Fractal Mixtures
DegreeMS
DepartmentMathematical Sciences
Advisors
  • Umberto Mosco, Advisor
  • Bogdan M. Vernescu, Department Head
  • Keywords
  • Sierpinski gasket
  • energy forms
  • fractal mixture
  • self-similar
  • Date of Presentation/Defense2009-05-01
    Availability unrestricted

    Abstract

    The purpose of this paper is to construct sets, measures and energy forms of certain mixed nested fractals which are spatially homogeneous but not strictly self-similar. We start with the constructions of regular nested fractals, such as Sierpinski gaskets and Koch curves, by employing the iterated map system. Then we show that under the open set condition, the unique invariant (self-similar) measure consists with the normalized Hausdorff measure ristricted on the invariant set. The energy forms construced on regular Sierpinski gaskets and Koch curves is also proved to be a closed form. Next, we use the similar idea, by extending the iterated maps system into a general case, to construct the mixture sets, as well as measures and energy forms. It can be seen that the elements so constructed will not have any strict self-similarity, but them indeed satisfy some weak self-similar properties.

    Files
  • Liang.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu