Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-051208-010020


Document Typedissertation
Author NameObi, Aghogho A
URNetd-051208-010020
TitleA Method Of Moments Approach for the Design Of RF Coils for MRI
DegreePhD
DepartmentElectrical & Computer Engineering
Advisors
  • Prof. Reinhold Ludwig, Advisor
  • Prof. Makarov, Committee Member
  • Prof. John Sullivan, Committee Member
  • Prof. Gene Bogdanov, Committee Member
  • Dr. Rosti Lemdiasov, Committee Member
  • Keywords
  • MRI
  • RF COILS
  • METHOD OF MOMENTS
  • Date of Presentation/Defense2008-03-01
    Availability unrestricted

    Abstract

    Magnetic Resonance Imaging (MRI) is a widely used soft-tissue imaging modality that has evolved over the past several years into a powerful and versatile medical diagnostic tool capable of providing in-vivo diagnostic images of human and animal anatomies. Current research efforts in MRI system design are driven by the need to obtain detailed high resolution images with improved image signal-to-noise ratio (SNR) at a given magnetic field strength. Invariably, this requirement demands the development of high performance MRI radio frequency (RF) coils. However, the complexities and stringent requirements of modern clinical MRI systems necessitate the development of new modeling methodologies for the design of high performance RF coils.

    This dissertation addresses this need by developing a distinct Method of Moments (MoM) modeling approach suitable for the simulation of RF coils loaded with biological tissues. The unique implementation utilizes two distinct basis functions in order to collectively describe the surface current density on the RF coil, and the sum of the volume current density and the displacement current density in the associated biological tissue. By selecting basis functions with similar properties to the actual physical quantities they describe, we avoided spurious solutions normally associated with MoM based implementations. The validity of our modeling method was confirmed by comparisons with analytical solutions as well as physical measurements, yielding good agreement.

    Furthermore, we applied the MoM based modeling method in the design and development of a novel 4-channel receive-only RF coil for breast imaging in a clinical 1.5T system. The new coil design was inspired by the multi-channel array concept, where multiple conducting strips were arranged in an anatomically conforming profile with the intention of improving sensitivity and SNR. In addition, the coil structure featured an open breast coil concept in order to facilitate MRI-guided biopsy and patient comfort. A comparison of simulation results and actual physical measurements from the prototype RF coil demonstrated good agreement with one another. Also, imaging tests were conducted on a pair of MRI phantoms as well as on a human patient after obtaining proper authorization. The tests revealed good magnetic field homogeneity and a high SNR in the region of interest. In addition, performance comparisons between the prototype 4-channel RF coil and existing high end clinical 4-channel RF breast coils indicated an achievement of superior SNR in conjunction with very good magnetic field homogeneity. Currently, the prototype 4-channel RF coil has outperformed all existing high end clinical 4-channel RF coils used in comparison studies.

    Files
  • PhD.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu