Worcester Polytechnic Institute Electronic Theses and Dissertations Collection

Title page for ETD etd-052312-120132


Document Typedissertation
Author NamePatvarczki, Jozsef
URNetd-052312-120132
TitleLayout Optimization for Distributed Relational Databases Using Machine Learning
DegreePhD
DepartmentComputer Science
Advisors
  • Dr. Neil T. Heffernan, Advisor
  • Dr. Elke A. Rundensteiner, Committee Member
  • Dr. Craig E. Wills, Committee Member
  • Dr. Daniel C. Zilio, Committee Member
  • Keywords
  • distributed databases
  • machine learning
  • layout optimization
  • Date of Presentation/Defense2012-07-03
    Availability unrestricted

    Abstract

    A common problem when running Web-based applications is how to scale-up the database. The solution to this problem usually involves having a smart Database Administrator determine how to spread the database tables out amongst computers that will work in parallel. Laying out database tables across multiple machines so they can act together as a single efficient database is hard. Automated methods are needed to help eliminate the time required for database administrators to create optimal configurations. There are four operators that we consider that can create a search space of possible database layouts: 1) denormalizing, 2) horizontally partitioning, 3) vertically partitioning, and 4) fully replicating. Textbooks offer general advice that is useful for dealing with extreme cases - for instance you should fully replicate a table if the level of insert to selects is close to zero. But even this seemingly obvious statement is not necessarily one that will lead to a speed up once you take into account that some nodes might be a bottle neck. There can be complex interactions between the 4 different operators which make it even more difficult to predict what the best thing to do is.

    Instead of using best practices to do database layout, we need a system that collects empirical data on when these 4 different operators are effective. We have implemented a state based search technique to try different operators, and then we used the empirically measured data to see if any speed up occurred. We recognized that the costs of creating the physical database layout are potentially large, but it is necessary since we want to know the "Ground Truth" about what is effective and under what conditions. After creating a dataset where these four different operators have been applied to make different databases, we can employ machine learning to induce rules to help govern the physical design of the database across an arbitrary number of computer nodes. This learning process, in turn, would allow the database placement algorithm to get better over time as it trains over a set of examples. What this algorithm calls for is that it will try to learn 1) "What is a good database layout for a particular application given a query workload?" and 2) "Can this algorithm automatically improve itself in making recommendations by using machine learned rules to try to generalize when it makes sense to apply each of these operators?"

    There has been considerable research done in parallelizing databases where large amounts of data are shipped from one node to another to answer a single query. Sometimes the costs of shipping the data back and forth might be high, so in this work we assume that it might be more efficient to create a database layout where each query can be answered by a single node. To make this assumption requires that all the incoming query templates are known beforehand. This requirement can easily be satisfied in the case of a Web-based application due to the characteristic that users typically interact with the system through a web interface such as web forms. In this case, unseen queries are not necessarily answerable, without first possibly reconstructing the data on a single machine. Prior knowledge of these exact query templates allows us to select the best possible database table placements across multiple nodes. But in the case of trying to improve the efficiency of a Web-based application, a web site provider might feel that they are willing to suffer the inconvenience of not being able to answer an arbitrary query, if they are in turn provided with a system that runs more efficiently.

    Files
  • jpatvarczki.pdf

  • Browse by Author | Browse by Department | Search all available ETDs

    [WPI] [Library] [Home] [Top]

    Questions? Email etd-questions@wpi.edu
    Maintained by webmaster@wpi.edu