Architectural Engineering

AREN 100X. ARCHITECTURAL ENGINEERING: HISTORY AND PRACTICE

This is a seminar-based course intended for First Year students seeking to understand the breadth of activities and technologies that comprise the Architectural Engineering discipline. The course studies the design of buildings through the historical evolution of construction technology over the last 25 centuries. It reviews the impact of technological advances on building design with a focus on the ways that these technologies have introduced specializations within the discipline. The class meets once a week during the spring semester (C & D terms).

AREN 2023. INTRODUCTION TO ARCHITECTURAL ENGINEERING SYSTEMS

Cat. I The objective of this course is to introduce the functional parts and systems that make up a building as well as their interactions in delivering required sustainable performance. It encompasses foundations, structures, building enclosures, heating and air conditioning, electrical, plumbing and fire safety systems as well as concepts of building performance and aspects of pertinent building codes and standards. This course, in addition, incorporates basic principles of building science and green construction. This course will be offered in 2012-13.

AREN 3001. ARCHITECURAL GRAPHICS AND COMMUNICATION

Cat. I With this course, students develop an understanding of the architectural design process and the graphic means for communicating and exchanging design content during the execution of a building project. The course covers the following topics: Nature of design (problems, solutions and process), building siting and orientation aimed at reducing energy requirements, architectural drawings (plans, elevations and cross sections), isometric projections and detail drawings. Most of these topics build upon the systematic use of electronic modeling software. This course is lab oriented. Recommended background: AREN 2023. This course will be offered in 2012-13.

AREN 3002. ARCHITECTURAL DESIGN

Cat. I This course is a continuation of AREN 3001, and is designed to further the student?s knowledge in the process of architectural design through the studies of ideas, principles and methods of design. The concepts are explored with the completion of a project, including a residential or a commercial project, which at its completion, will be reviewed by invited guest critics. The course emphasizes the development of form, space, spatial relationships, materials, and architectural presentation techniques through the use of computer graphics. It introduces principles of passive approaches to reduce energy consumption. It also covers building codes in the design process. Recommended background: AREN 3001. This course will be offered in 2013-14.

AREN 3003. PRINCIPLES OF HVAC DESIGN FOR BUILDINGS

Cat. I The course introduces principles and applications of mechanical systems that are required for environmental comfort, health, and safety of building occupants with a focus on energy efficiency and conservation. Topics include psychometrics, thermal comfort, building heating and cooling loads, fluid flow basics, HVAC components and systems, building envelop heat transfer, and energy requirements. In the course, students develop the ability to design and conduct computational modelling experiments and to analyze and interpret output data for selection between system alternatives in order to optimize energy use. Recommended background: Thermodynamics. This course will be offered in 2012-13.

AREN 3004. BUILDING ELEC & LIGHTNG SYSTMS

Cat. I Introduction to the energy efficiency analysis and design of electrical and illumination systems in buildings. Topics include AC, DC, single-phase and three-phase circuits, transients, electrical and lighting loads, branch circuits, panel-boards, switching, system sizing, grounding, fault calculations, over-current protection, and design and specification of emergency power backup and alternative power systems. Provides general introduction to the visual environment, including subjective and objective scales of measurement, visual perception, photometry, brightness, luminance, illumination, natural and artificial lighting. Design problems, field measurements, computer, and other models will be used to explore major topics and energy savings options. Work includes study of applicable NFPA 70 (NEC) and related building codes. Recommended background: ECE 2010.

AREN 3006. ADVANCED HVAC SYSTEM DESIGN

Cat. I Analysis of heating and cooling load requirements, considering building construction type, geometry, infiltration, occupancy effects, and daily load variations. Heating design addresses water heating systems, electrical heating, central heating, heating of low and high-rise buildings, selection of heaters, boilers, pumps, piping design. Cooling design addresses refrigerants, refrigeration cycle, evaporator, compressor, condenser, thermostatic expansion valves, refrigeration system control equipment, motor and motor control equipment, refrigeration accessories, calculation of refrigeration piping and absorption systems. Computer applications for heating and cooling load analysis will be introduced to develop energy saving solutions. Analytical techniques and building codes are discussed through case studies and design projects. Recommended background: AREN 3003, ES 3004. This course will be offered in 2013-14.

AREN 300X. BUILDING AND ARCHITECTURAL ACOUSTICS

The course introduces the fundamentals of sound, its sources and propagation. The subjective and objective scales of measurement and laws of psychophysics are covered. The relationship between sound and listener in different settings, outdoor, indoor and adjacent rooms, is explored. These settings provide comprehensive coverage of the principles relevant to architectural and building acoustics. The course addresses the design of acoustic spaces, such as conference rooms, classrooms, lecture halls, music halls, theaters, and churches. It covers the selection and determination of appropriate spatial and temporal acoustic measures, such as background noise levels, reverberation time and speech transmission index. The second part of the course focuses on noise control at high and low frequency; effects of noise and vibration on humans and buildings; design of noise control systems; calculation of airborne and impact sound insulation and noise and vibration control applications to enclosed spaces, such as residential units, offices, schools and mechanical rooms. This course can be used to satisfy the distribution requirement in Building Mechanical Systems for an Architectural Engineering major. Recommended background: No special background required

 
  • Email a Friend
  • Bookmark this Page
  • Share this Page