Engineering Science Interdisciplinary

ES 1020. INTRODUCTION TO ENGINEERING

This course is for first year students with an interest in engineering. The course focuses on the design process. Students are introduced to engineering through case studies and reverse engineering activities. Students will learn the steps in the design process and how engineers use this process to create new devices. Teams of students are then assigned a design project that culminates in building and evaluating a prototype of their design. Results of the design project are presented in both oral and written reports. This course does not require any prior engineering background. Note: This course can be used towards the Engineering Science and Design distribution requirement in IE and ME.

ES 1310. INTRODUCTION TO COMPUTER AIDED DESIGN

This introductory course in engineering graphical communications and design provides a solid background for all engineering disciplines. The ability to visualize, create, and apply proper design intent and industry standards for simple parts, assemblies and drawings is a necessity for anyone in a technology environment. Computer Aided Design software is used as a tool to create 2D & 3D sketches, 3D parts, 3D assemblies and 2D drawings per an industry standard. Multiview and pictorial graphics techniques are integrated with ANSI standards for dimensioning and tolerances, sectioning, and generating detailed engineering drawings. Emphasis is placed on relating drawings to the required manufacturing processes. The design process and aids to creativity are combined with graphical procedures to incorporate functional design requirements in the geometric model. No prior engineering graphics or software knowledge is assumed.

ES 2502. STRESS ANALYSIS

This is an introductory course that addresses the analysis of basic mechanical and structural elements. Topics include general concepts of stresses, strains, and material properties of common engineering materials. Also covered are two-dimensional stress transformations, principal stresses, Mohr?s circle and deformations due to mechanical and thermal effects. Applications are to uniaxially loaded bars, circular shafts under torsion, bending and shearing and deflection of beams, and buckling of columns. Both statically determinate and indeterminate problems are analyzed. Recommended background: ES 2501 or equivalent, differential (MA 1021) and integral (MA 1022) calculus, vector algebra (MA 1023), and double and triple integration (MA 1024).

ES 2502. STRESS ANANYSIS (ONLINE)

This is an introductory course that addresses the analysis of basic mechanical and structural elements. Topics include general concepts of stresses, strains, and material properties of common engineering materials. Also covered are two-dimensional stress transformations, principal stresses, Mohr?s circle and deformations due to mechanical and thermal effects. Applications are to uniaxially loaded bars, circular shafts under torsion, bending and shearing and deflection of beams, and buckling of columns. Both statically determinate and indeterminate problems are analyzed. Recommended background: ES 2501 or equivalent, differential (MA 1021) and integral (MA 1022) calculus, vector algebra (MA 1023), and double and triple integration (MA 1024).

ES 2503. INTRODUCTION TO DYNAMIC SYSTEMS

Cat. I Engineers should be able to formulate and solve problems that involve forces that act on bodies which are moving. This course deals with the kinematics and dynamics of particles and rigid bodies which move in a plane. Topics covered will include: kinematics of particles and rigid bodies, equations of motion, work-energy methods, and impulse and momentum. In this course a basic introduction to mechanical vibration is also discussed. Basic equations will be developed with respect to translating and rotating coordinate systems. Recommended background: Statics (ES 2501 or CE 2000).

ES 3002. MASS TRANSFER

Cat. I This course introduces the student to the phenomena of diffusion and mass transfer. These occur in processes during which a change in chemical composition of one or more phases occurs. Diffusion and mass transfer can take place in living systems, in the environment, and in chemical processes. This course will show how to handle quantitative calculations involving diffusion and/or mass transfer, including design of process equipment. Topics may include: fundamentals of diffusional transport, diffusion in thin films; unsteady diffusion; diffusion in solids; convective mass transfer; dispersion; transport in membranes; diffusion with chemical reaction; simultaneous heat and mass transfer; selected mass transfer operations such as absorption, drying, humidification, extraction, crystallization, adsorption, etc. Recommended background: fundamentals of chemical thermodynamics, fluid flow and heat transfer; ordinary differential equations (MA 2051 or equivalent).

ES 3011. CONTROL ENGINEERING I

Cat. I Characteristics of control systems. Mathematical representation of control components and systems. Laplace transforms, transfer functions, block and signal flow diagrams. Transient response analysis. Introduction to the root-locus method and stability analysis. Frequency response techniques including Bode, polar, and Nichols plots. This sequence of courses in the field of control engineering (ES 3011) is generally available to all juniors and seniors regardless of department. A good background in mathematics is required; familiarity with Laplace transforms, complex variables and matrices is desirable but not mandatory. All students taking Control Engineering I should have an understanding of ordinary differential equations (MA 2051 or equivalent) and basic physics through electricity and magnetism (PH 1120/1121). Control Engineering I may be considered a terminal course, or it may be the first course for those students wishing to do extensive work in this field. Students taking the sequence of two courses will be prepared for graduate work in the field. Recommended background: Ordinary Differential Equations (MA 2051) and Electricity and Magnestism (PH 1120, PH 1121).

 
  • Email a Friend
  • Bookmark this Page
  • Share this Page