Renewable/Green Energy

H2 Gas Separation; Fuel Cells

Activity

The departments of Chemistry & Biochemistry and Chemical Engineering are the primary sources of renewable energy intellectual property including disclosures, patent applications, patents, and know-how/trade secrets. Other departments, notably Mechanical Engineering, are also contributors to this area. Strengths in regard to innovation with commercial potential include Hydrogen fuel cell technology (see Fuel Cell Center) and hydrogen separation.

Pending Patents

Van de Ven, Fluidic Variable Inertia Flywheel - This invention combines rotating kinetic and pneumatic energy storage into a single device to drastically increase the energy storage density over traditional hydraulic accumulators. Energy is stored in the device by either compressing a gas with the addition of hydraulic fluid or by applying a torque to the device. The two energy domains are coupled as the hydraulic fluid changes the moment of inertia of the device. Due to the pressure gradient created by the centripetal acceleration of the hydraulic fluid, the hydraulic system pressure can be directly controlled independently of the quantity of energy stored. This feature allows the hydraulic system pressure to remain constant regardless of the state of charge.

Van de Ven, Phase-shift high-speed valve for switching-mode control - The phase-shift high-speed valve enables switch-mode control of hydraulic circuits by providing a high frequency on-off valve with a variable duty ratio. By operating in efficient on or off states, switch-mode control can be applied to a variety of hydraulic circuits and allows any fixed displacement hydraulic pump, motor, or linear actuator to be virtually variable. Furthermore, the valve can be configured to allow pumping and motoring of a single device in both rotating directions, known as four quadrant operation. The valve requires minimimal input energy at high frequency operation by using a continuously rotating valve plate. Due to the axial flow construction, tight control of valve clearance are possible with less expensive manufacturing tolerances.

The following eight inventions constitute a family of inventions relating to the design and fabrication of high reliability, lower cost membranes operating at high temperatures for the separation of hydrogen gas at high, industrially useful fluxes from a mixture of gases.

Ma , U.S. Pat. App. No. 10/804,848; U.S. Pat. Pub. No. 20040244583, Method for curing defects in the fabrication of a composite gas separation module*.

Ma , U.S. Pat. App. No. 10/804,847; U.S. Pat. Pub.No. 20040237780, Method for fabricating composite gas separation modules*.

Ma , U.S. Pat. App. No. 10/804,846; U.S. Pat. Pub.No. 20040237779, Composite gas separation modules having intermediate porous metal layer*.

Ma , U.S. Pat. App. No. 10/836,088; U.S. Pat. Pub. No. 20040244590, Composite gas separation modules having high Tamman Temperature intermediate layers*.

Ma , U.S. Pat. App. No. 10/896,743; U.S. Pat. Pub. No. 20060016332, Composite gas separation modules having a layer of particles with a uniform binder metal distribution*.

Ma , PCT/2005/033267, Membrane enhanced reactor*.

Ma , PCT/2005/033289, Membrane steam reformer*.

Ma , PCT/2005/033295, Reactor and process for steam reforming*.

Patents

Ma , U.S. Pat. No. 6,152,987 , Hydrogen gas-extraction module and method of fabrication - This invention is the original innovation leading to a protected technology area in high temperature, lower cost membrane development for large volume hydrogen gas separation.  

 
  • Email a Friend
  • Bookmark this Page
  • Share this Page