Research Notebook

Researchers Develop Technology to Protect Firefighters from Flashover

After a 1999 warehouse fire killed six firefighters in Worcester, John Orr, professor of electrical and computer engineering, challenged his WPI colleagues to develop technology to safeguard those who protect our lives and property. Since then, with more than $5 million in federal funding, a team of researchers has developed and extensively tested a system that can precisely track first responders inside buildings and monitor their vital signs. Over the past year, with $1 million from the Federal Emergency Management Agency (FEMA), they added to that system new technology that will warn firefighters of impending flashover — a deadly event in which everything in a room suddenly ignites. Electrical and computer engineering faculty members James Duckworth and David Cyganski and Fire Protection Engineering Department head Kathy Notarianni collaborated on the project, which produced a prototype device that firefighters can deposit as they move through a structure. The device underwent burn tests in WPI’s Fire Sciences Laboratory and at the Massachusetts Firefighting Academy, culminating in a burn test (shown above) in the summer of 2010 in a small structure that simulated a furnished living room. The sensor worked as hoped — providing enough warning for firefighters to safely get clear.

A Step Toward Cleaner Coal Power

Yi Hua “Ed” Ma, professor of chemical engineering, received a $1.5 million award from the U.S. Department of Energy to work in collaboration with three corporate partners to demonstrate that a patented hydrogen separation technology that uses a palladium membrane can lower the cost of generating electricity with advanced coal gasification systems while also reducing greenhouse gas emissions by isolating the carbon dioxide produced by coal gas combustion. This program will be incrementally funded up to a total of $8.4 million over its 51-month time frame.

WPI Part of National Mathematics Center

WPI is a partner in the National Center for Cognition and Mathematics Instruction, established with a $10 million award from the U.S. Department of Education. The virtual center is applying the latest cognitive science principles to redesign a widely used middle school mathematics curriculum. Under the direction of Neil Heffernan, associate professor of computer science, WPI is receiving $500,000 over five years to use ASSISTments, an intelligent tutoring system developed at the university, to study how best to space out practice opportunities and feedback to maximize student learning.

Deans Inaugurate New Era at WPI

For the first time in its 145-year history, WPI’s academic divisions are under the direction of deans. (From left, above) Selçuk Güçeri, Bernard M. Gordon Dean of Engineering, Karen Kashmanian Oates, Peterson Family Dean of Arts and Sciences, and Mark Rice, Dean of WPI’s new School of Business, joined the university this year from prestigious institutions: Güçeri from Drexel University, where he was dean of engineering; Oates from the National Science Foundation, where she was deputy director for the Division of Undergraduate Education; and Rice from Babson College, where he was Murata Dean of the F. W. Olin Graduate School of Business. In addition to leading their respective academic areas, the new deans will work with faculty members across the Institute to advance WPI’s academic and research programs.

Conferences Focus on Safety, Geolocation, Surfaces, and Neuroprosthetics

The leading conferences on first responder location, wireless geolocation, surface metrology, and advanced implantable neuroprosthetics took place at WPI in 2010. These international meetings were all developed and driven by WPI faculty researchers.

Second International Conference on Surface Metrology

Surfaces cover everything, and the characteristics of those surfaces — particularly their texture or roughness — can be meaningful for professionals in a wide range of fields, including archaeology, art conservation, forensic science, medical devices, engineering, and manufacturing. More than 100 scientists, art conservators, and engineers from these and other fields — hailing from more than 10 nations — exchanged ideas and learned about the latest advances and best practices in the field.

Jalal Mapar, program manager at the Department of Homeland Security, addresses the Workshop on Opportunistic Radio Frequency Localization.

Second International Workshop on Opportunistic Radio Frequency Localization for Next Generation Wireless Devices

Akin to the rapid evolution of social media, mobile geolocation is changing how people interact and shop, and how businesses connect with consumers. More than 50 invited experts from industry and academia agreed that the rapid growth of geolocation apps for smart phones and other wireless devices has created new opportunities for mining data about consumer behavior for patterns that will drive future technological innovation.

Worcester (Mass.) firefighters take part in a technology demonstration during the Workshop on Precision Indoor Personnel Location and Tracking for Emergency Responders.

Fifth Workshop on Precision Indoor Personnel Location and Tracking for Emergency Responders

More than 100 academic, corporate, and government researchers, government representatives, and first responders discussed the latest developments in this emerging field. As location and tracking systems move toward commercialization, this year’s meeting included a focus on the need for technology standards.


 

Johnny Matheny of West Virginia, who lost part of his left arm to cancer, poses a question during Neuroprosthetics 2010.

Neuroprosthetics 2010

Neuroprosthetics, advanced limb replacements that will be integrated with the body and nervous system, hold great promise for improving the lives of amputees, including military service members who’ve been injured in combat. Clinicians and scientists from Europe and the United States who are at the forefront of this field gathered to discuss two key challenges: osseointegration, or implanting a titanium post in the remnant bone to serve as an attachment point for the prosthetic, and soft-tissue regeneration, or forming an infection-resistant seal around the post with regenerated tissue.