

Internship Summary Presentation

Dongwei Mei Electrical and Computer Engineering, WPI Broadcom Corporation Dec 2012

CONTENTS

- Introduction
 - About Broadcom
 - Overview of the Internship
- Linked List Scheduler(LLS) Modeling
 - Background
 - Theory of Operation
 - Key Components
 - LLS Model GUI
 - Future work
- Split Lot Test
 - Background
 - Test Environment and Tools

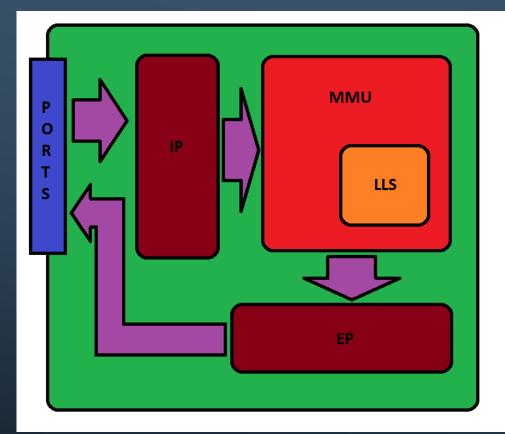
- My Role in the Project
- Conclusion
 - What was achieved?
 - What did I learn?
 - Internship <-> school
- Future
 - As an engineer
 - My Plans
- Reference

Introduction

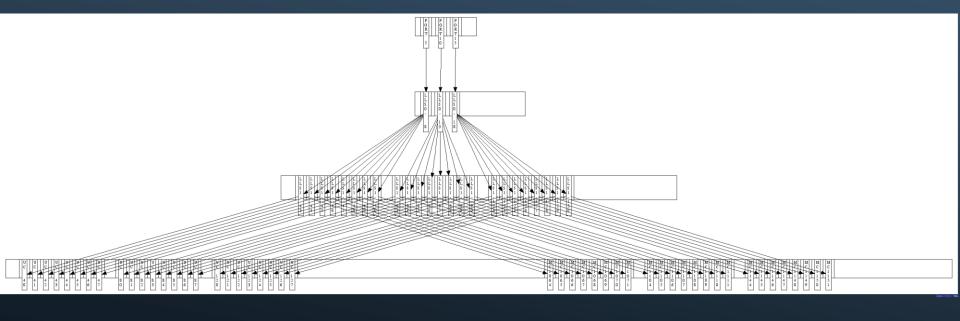
About Broadcom

- 2011 Net Revenue of **\$7.39 Billion** Founded in **1991**
- Initial Public Offering in April 1998 (NASDAQ-BRCM)
- A Global Leader in Semiconductors for Wired and Wireless Communications
- Broad IP Portfolio with More than 17,800 U.S. and Foreign Patents and Applications
- One of the Largest Volume Fabless Semiconductor Suppliers
- ~11,200 Employees Worldwide

Broadcom Products

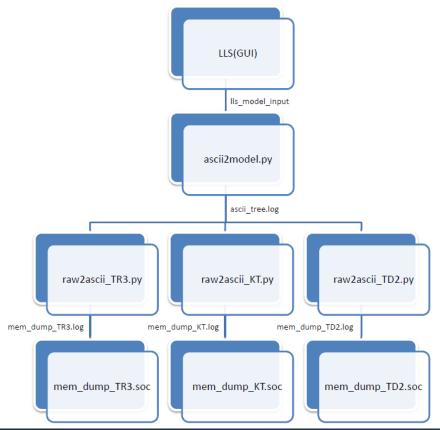

- BCM Andover Office (Infrastructure and Network Group)
- From Jul 23, 2012 to Dec 21, 2012
 - Summer: Full-time
 - Fall: Part-time
- Major 2 Projects:
 - Linked List Scheduler
 - Split Lot Test

• What is MMU?


- The Memory Management Unit (MMU) is capable of providing line rate buffering across all packet sizes for 100Gbps of Ethernet traffic.
- It all started with queuing. A network processor has a certain amount of processing ability. If the rate of the coming packages reached a point, any packages that arrives at the chip has to go through so waiting time. During the waiting time, they resident inside the memory and we have to figure out a way to deal with these waiting packages and make sure everyone got the service they deserve. So here we have the MMU.

• What is LLS?

- The Linked List Scheduler design operates as part of the larger MMU(Memory Management Unit) design that includes the Queuing and Payload Storage components.
- is responsible for selecting which queue is next to transmit a packet within each port, applying strict priority, minimum guarantees, weighted fairness and max shaping scheduling policies.


Modeling Of LLS

 The LLS modeling exists to provide an easy path to visualize the settings of the LLS within all devices that contain the LLS (typically found inside the MMU of XGS devices when present).

Theory Of Operation mem_dump

- Collects the raw memory
- Ascii_tree
 - Convert into a human readable file
- Tree to CSV
 - Convert into a machine readable file

-Level 0 Nodes

Demonstrations

File He	elp												
(Parent,	Node) 🗕	Show:	📕 Num	📕 Min	📕 Max	📕 Wt/S	P 📕 In	📕 Out	📕 Drop	Refresh			
							Level 1	Nodes-					
in	May MH	./cp	Tip	0+	Drop		NUM	Min	May	ы+ /ср	Tip	0+	Dron

in	Max	Wt/SP	In	Out	Drop	Num	Min	Ma×	Wt/SP	In	Out	Drop		Num	Min	Max	Wt/SP	In
480M	9.4480M	10			Δ	85	22.4960M	22.4960M	58				Δ	29			58	
		50				86			55					30	150.0160M	150.0160M	3	
520M	8.3520M	50				87	127.4880M	127.4880M	55					31			64	
220M	1.322OM	62				88			8					32	150.0160M	150.0160M	21	
600M	3.3600M	34				89			24					33	150.0160M	150.0160M	50	
000M	14.4000M	16				90	127.4880M	127.4880M	7					34			54	
680M	1.3680M	60				91			14					35			57	
		31				92	22.4960M	22.4960M	4					36	150.0160M	150.0160M	36	
0000K	714.0000K	56				93	15.0000M	15.0000M	38					37	150.0160M	150.0160M		
540M	1.7540M	62				95			27					38			30	
		51				96	135.0400M	135.0400M	13					39	150.0160M	150.0160M	64	
0000K	904.0000K	28				97	225.0240M	225.0240M	27					40			3	
	764.0000K	47				98			51					41	150.0160M	150.0160M	64	
000M	1.0000M	33				99	1.2749G	1.2749G	25					42			29	
0000K	484.0000K	51				100			32					43	150.0160M	150.0160M	39	
		37				101			32					44			53	
520M	4.352OM	7				102		225.0240M	12					45			39	
900M	3.4900M	26				103	1.2749G	1.2749G	45					46	150.0160M	150.0160M	7	
		46				104			19					47	150.0160M	150.0160M	1	
080M	4.9080M	51				105	1.2749G	1.2749G	11					48			9	
		49				106			30					49	1.5002G	1.5002G	41	
	22.5600M	48				107			13				- L	50			11	
	38.0480M	62				108	225.0240M	225.0240M	27					51	1.5002G	1.5002G	18	
	54.1440M	37				109			46					52			13	
900M	1.8900M	17				110	225.0240M	225.0240M	32					53			28	
280M	9.5280M	24				111	1.2749G	1.2749G	33					54	1.5002G	1.5002G	9	
400M	8.8400M	36				112			64					55	1.5002G	1.5002G	60	
		6				94			59					56			6	
460M	3.7460M				1	9999							71	9999				
FOOM	AO BEOOM	1			I IV	1		1	1		1	,				1	1	
1													-					

LLS Configuration

(

Bringing Up the GUI

	Dpen X	n -ox)
File Help	Directory: /home/dmei/LLS -]]
	Ils~ socsoc.soc~ mem_dump_TR3.log svk2model_tr3 mem_dump_TR3.log~ svk2model_tr3 mem_dump_TR3.log~ svk2model_tr3 sample_out temp sample_out~ temp~ log I soc_test.soc~ test_reslut_	
	File name: sample_out Open Files of type:	

• Navigate the Tree

LLS Configuration									
File Help									
Sort order: (Parent, Node)	rt order: (Parent, Node) — Show: 📕 Num 📕 Min 📕 Max 📕 Wt/SP 📕 In 📕 Out 📕 Drop								
	Aeues NODE CONFIG TRAFFIC								
Num Min Max	Wt/SP <u>In</u>	Out Drop	Num Min Ma×	Wt/SP In Out	Drop Num Min M				
272 1.2060M 1.2060M	37 10.0000M	1.2060M 8.7940M 🔼	3 22.4960M 22.4960M	44 13.3740M 13.3740M	2 150.0160M 150.				
273		10.0000M	4	16 29.1800M 29.1800M	3 150.0160M 150.				
274 1.5620M 1.5620M 275 606.0000K 606.0000K		1.5620M 8.4380M 606.0000K 9.3940M	5 17.1360M 17.1360M	16	4 5 150.0160M 150.				
276 8.1920M 8.1920M	6 10.0000M	8.1920M 1.8080M	7 132.8640M 132.8640M		6				
277 6.8640M 6.8640M	4 10.0000M	6.8640M 3.1360M	8	10	7				
278 4.1240M 4.1240M	28 10.0000M	4.1240M 5.8760M	9 22.4960M 22.4960M	23	8 150.0160M 150.				
279 56 1.7140M 1.7140M	23 10.0000M	10.0000M	10	50 37	9 150.0160M 150.				
57	50		12 127.4880M 127.4880M		11 150.0160M 150.				
58 2.4740M 2.4740M	33		13 127.4880M 127.4880M		12				
59 96.0000K 96.0000K	37		14	54	13				
60 9.7120M 9.7120M			15 22.4960M 22.4960M	18	14 150.0160M 150.				
61 7.5280M 7.5280M 62 7.0440M 7.0440M	59 50		16 17 22.4960M 22.4960M	57 28	15 150.0160M 150. 16				
63	20		18	28	17				
280 13.2880M 13.2880M	20		19 127.4880M 127.4880M		18 150.0160M 150.				
281	57		20	17	19				
282 6.8960M 6.8960M	1		21 22.4960M 22.4960M	32	20 150.0160M 150.				
283 13.0320M 13.0320M	61		22	35	21				
284 75.2640M 75.2640M 285	37		23 24 127.4880M 127.4880M	58 13	22 150.0160M 150.				
286 106.4960M 106.4960M			24 127.4880M 127.4880M 25 127.4880M 127.4880M		23 24 150.0160M 150.				
287 6.4440M 6.4440M	19		26	55	25 150.0160M 150.				
64	53		27 22.4960M 22.4960M	33	26				
65 1.2260M 1.2260M	41		28	60	27 150.0160M 150.				
66 830.0000K 830.0000K	< 61 58		29 20 22 40 60M 22 40 60M	26	28				
67 1.3160M 1.3160M 68 2.7040M 2.7040M	25		30 22.4960M 22.4960M 31 127.4880M 127.4880M	61 29	29 30 150.0160M 150.				
69 8.1920M 8.1920M	62		32	60	30 130.0100M 130.				

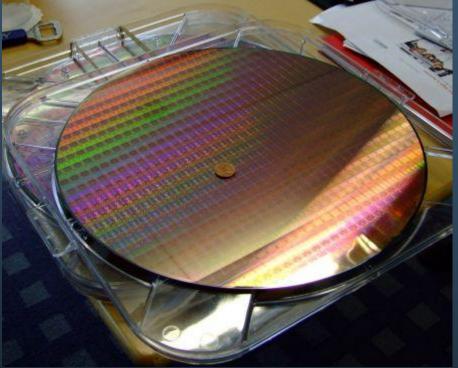
• Error Check:

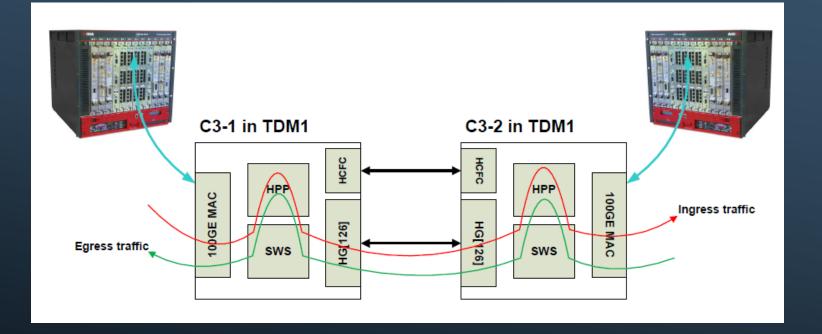
	Error Type	Note
1	Not Leading to an actual Port	Finished
2	EF and WERR cannot be configured at the same node	Finished
3	L2 nodes must be Strict Pri if marked as EF	Finished
4	In a group of queues that lead to I1, only one of the queues in the set is allowed to be EF	Finished

Supported Device

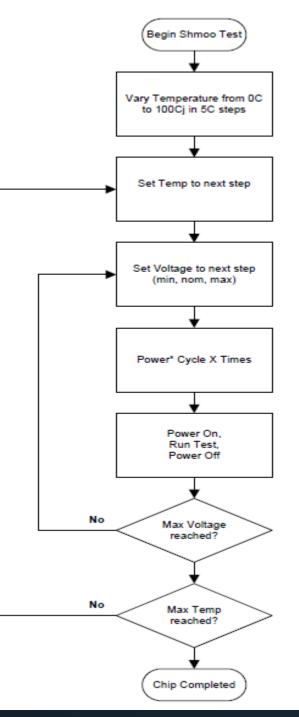
	Device name	Note
1	Triumph 3	Fully Supported
2	Katana	Fully Supported
3	Katana 2	Fully Supported
4	Trident 2	Started memory dump

Future Work


- Allow the user to change the parameters and see impact on traffic
- Reverse Function
- Support more devices and scheduling features


Background

- Fabrication
 Parameters change
 during manufacturing
- Corners: FF, FS, SF, SS, TT
- Temperature: -40 °C
 ~ 110 °C
- Voltage: -3% ~ + 3%



Test Environment

- My contributions to the test
 - Executed 65% Split Lot tests
 - Developed a TCL script that automates the Thermo Stream
 - Developed a test case monitoring power consumption for FF parts in high Voltage
 - Maintained a database for test results

Conclusion

Conclusions

- What was ultimately achieved for the sponsor?
 - A set of tools: feed in memory dump, gives out the graphic tree.
 - Currently EA1. Aimed to have a Release Version
 1.0 by the end of this year
 - Targeted user: Application Engineers. Try to give to customers in the future

Conclusions

• What did I learn from the internship?

- Programming language: Python, TCL, Perl
- Unix general operation
- Perforce source code control
- Jira issue tracking
- Confluence wiki

Conclusions

- How will the internship impact my academic learning at WPI?
 - Motivation
 - Better choice in course selecting, skill developing and tool set learning
 - Management
 - Balance life, work and study
 - Multi-skills
 - Programming language, communicational skills, problem solving

Future

Future

- How will the internship prepare me for my future career as an engineer?
 - Inspiration
 - Engineers are like designers
 - Design is Boundless
 - Co-operation
 - Being capable and willing to work with others
 - Education
 - Learning curve is steep

Future

- What are my next steps?
 - A Future engineer
- Some of my thoughts...
 - Take advantage of our hallmark
 - Being proud of a WPI student
 - Research: Turn money into Technology / Innovation: Turn technology into money

REFERENCE

- [1] Fairhusrt, Mark. *Linked List Scheduler UArch*. Broadcom Corporation. Rev 0.6, Feb 21, 2012
- [2] Littlemore, ken. *Katana LLS Scheduler Observations / Recommendations*. Broadcom Corporation. Rev 0.13, Jul 18, 2012
- [3] Jing, Ding. *Triumph3 MMU Architecture*. Broadcom Corporation. Rev 0.9, Apr 28, 2011
- [4] Fairhusrt, Mark. *Katana2 MMU uArch Specification*. Broadcom Corporation. Rev 0.3 Jun 22, 2012
- [5] Fairhusrt, Mark. *Katana MMU uArch Specification*. Broadcom Corporation. Rev 1.15 Dec 14, 2010
- [6] Ehlert, Doug. *Caladan3 Arch Notes: Interfaces and Flow Control*. Broadcom Corporation. Rev 0.2, Nov 28, 2010
- [7] Python GUI programming. In *Python Programming Language Official Website*. Retrieved 2012-04-15, from <u>http://wiki.python.org/moin/GuiProgramming</u>
- [8] Python Tutorial. In *Tutorialspoint simple easy learning*. From <u>http://www.tutorialspoint.com/python/index.htm</u>