Undergraduate Courses

AREN 100X. ARCHITECTURAL ENGINEERING: HISTORY AND PRACTICE

This is a seminar-based course intended for First Year students seeking to understand the breadth of activities and technologies that comprise the Architectural Engineering discipline. The course studies the design of buildings through the historical evolution of construction technology over the last 25 centuries. It reviews the impact of technological advances on building design with a focus on the ways that these technologies have introduced specializations within the discipline. The class meets once a week during the spring semester (C & D terms).

AREN 300X. BUILDING AND ARCHITECTURAL ACOUSTICS

The course introduces the fundamentals of sound, its sources and propagation. The subjective and objective scales of measurement and laws of psychophysics are covered. The relationship between sound and listener in different settings, outdoor, indoor and adjacent rooms, is explored. These settings provide comprehensive coverage of the principles relevant to architectural and building acoustics. The course addresses the design of acoustic spaces, such as conference rooms, classrooms, lecture halls, music halls, theaters, and churches. It covers the selection and determination of appropriate spatial and temporal acoustic measures, such as background noise levels, reverberation time and speech transmission index. The second part of the course focuses on noise control at high and low frequency; effects of noise and vibration on humans and buildings; design of noise control systems; calculation of airborne and impact sound insulation and noise and vibration control applications to enclosed spaces, such as residential units, offices, schools and mechanical rooms. This course can be used to satisfy the distribution requirement in Building Mechanical Systems for an Architectural Engineering major. Recommended background: No special background required

AREN 2002. ARCHITECTURAL DESIGN I

This course aims to develop an understanding of the architectural design process as an activity based upon observation, critical inquiry, and communication. Through a series of design exercises, this course aims to teach the basic architectural design skills needed for the creation of spaces that respond to human needs in terms of materiality, use, and scale. Graphic means for communicating and exchanging design content will be taught alongside the design exercises and as an integral part of the design process. The course covers the following topics: Nature of design, siting and context, human scale, architectural drawings (plans, elevations and cross sections), isometric projections and detail drawings This is a studio course that uses modeling software, hand drawings, and physical model making. Recommended background: AREN 2023 Suggested background: CE 3030

AREN 2023. INTRODUCTION TO ARCHITECTURAL ENGINEERING SYSTEMS

Cat. I The objective of this course is to introduce the functional parts and systems that make up a building as well as their interactions in delivering required sustainable performance. It encompasses foundations, structures, building enclosures, heating and air conditioning, electrical, plumbing and fire safety systems as well as concepts of building performance and aspects of pertinent building codes and standards. This course, in addition, incorporates basic principles of building science and green construction.

AREN 2025. BUILDING ELECTRICAL SYSTEMS

Cat. I The principles of electrical system design in buildings are introduced in this course. Starting with an overview of electrical fundamentals and related laws, it covers circuit design, power distribution and service equipment, communication systems and special electrical systems that meet the requirements of the national electric code as well as building occupants. Other topics include single-phase and three-phase circuits, electrical and lighting loads, panel-board design, switching, system sizing, grounding, fault calculations, and over-current protection. The design criteria and calculation procedures for developing simple layouts of building electrical systems are illustrated. Work includes study of applicable NFPA 70 (NEC) and related building codes. Recommended background: electricity and magnetism (PH 1120/1121 or equivalent)

AREN 3001. ARCHITECURAL GRAPHICS AND COMMUNICATION

Cat. I With this course, students develop an understanding of the architectural design process and the graphic means for communicating and exchanging design content during the execution of a building project. The course covers the following topics: Nature of design (problems, solutions and process), building siting and orientation aimed at reducing energy requirements, architectural drawings (plans, elevations and cross sections), isometric projections and detail drawings. Most of these topics build upon the systematic use of electronic modeling software. This course is lab oriented. Recommended background: AREN 2023.

AREN 3002. ARCHITECTURAL DESIGN

Cat. I This course is a continuation of AREN 3001, and is designed to further the student?s knowledge in the process of architectural design through the studies of ideas, principles and methods of design. The concepts are explored with the completion of a project, including a residential or a commercial project, which at its completion, will be reviewed by invited guest critics. The course emphasizes the development of form, space, spatial relationships, materials, and architectural presentation techniques through the use of computer graphics. It introduces principles of passive approaches to reduce energy consumption. It also covers building codes in the design process. Recommended background: AREN 3001.

AREN 3003. PRINCIPLES OF HVAC DESIGN FOR BUILDINGS

Cat. I The course introduces principles and applications of mechanical systems that are required for environmental comfort, health, and safety of building occupants with a focus on energy efficiency and conservation. Topics include psychometrics, thermal comfort, building heating and cooling loads, fluid flow basics, HVAC components and systems, building envelop heat transfer, and energy requirements. In the course, students develop the ability to design and conduct computational modelling experiments and to analyze and interpret output data for selection between system alternatives in order to optimize energy use. Recommended background: Thermodynamics.

AREN 3004. BUILDING ELECTRICAL AND LIGHTING SYSTEMS

Cat. I Introduction to the energy efficiency analysis and design of electrical and illumination systems in buildings. Topics include AC, DC, single-phase and three-phase circuits, transients, electrical and lighting loads, branch circuits, panel-boards, switching, system sizing, grounding, fault calculations, over-current protection, and design and specification of emergency power backup and alternative power systems. Provides general introduction to the visual environment, including subjective and objective scales of measurement, visual perception, photometry, brightness, luminance, illumination, natural and artificial lighting. Design problems, field measurements, computer, and other models will be used to explore major topics and energy savings options. Work includes study of applicable NFPA 70 (NEC) and related building codes. Recommended background: ECE 2010.

AREN 3005. LIGHTING SYSTEMS

Cat. I This course focuses on the design of illumination systems in buildings. It provides a general introduction to the visual environment, including subjective and objective scales of measurement, visual perception, photometry, brightness, luminance, illumination, natural and artificial lighting. Other topics include photometric units, light sources, daylight luminaries, lighting quality, light loss factors, average luminance calculations (lumen method), point-by-point calculations, performance impacts, and ethics. Field measurements and computer simulations are used to explore some major aspects of architectural illumination systems. Design problems are solved by considering economic evaluation, energy saving criteria and applicable standards and building codes. Recommended background: electrical systems (AREN 2025 or equivalent)

AREN 3006. ADVANCED HVAC SYSTEM DESIGN

Cat. I Analysis of heating and cooling load requirements, considering building construction type, geometry, infiltration, occupancy effects, and daily load variations. Heating design addresses water heating systems, electrical heating, central heating, heating of low and high-rise buildings, selection of heaters, boilers, pumps, piping design. Cooling design addresses refrigerants, refrigeration cycle, evaporator, compressor, condenser, thermostatic expansion valves, refrigeration system control equipment, motor and motor control equipment, refrigeration accessories, calculation of refrigeration piping and absorption systems. Computer applications for heating and cooling load analysis will be introduced to develop energy saving solutions. Analytical techniques and building codes are discussed through case studies and design projects. Recommended background: AREN 3003, ES 3004.

AREN 3024. BUILDING PHYSICS

Cat. I The course introduces the principles of building physics, as they are applied to various building design situations and performance requirements. Covered topics include heat transfer, moisture control, condensation, cold bridging, external and internal gains, and air flows, as they pertain to building envelopes (external walls, windows and doors, and roofs) and the requirements of environmental comfort of space occupants. Design exercises take into account pertinent building and energy codes as well as comfort standards. The course gives students the tools to integrate engineering science fundamentals and physics principles in developing building design solutions. Thermal measurements in building components are performed. Recommended background: thermodynamics and heat transfer (ES 3001, ES 3003 or equivalent).

AREN 3025. BUILDING ENERGY SIMULATION

Cat. I The course addresses the basic principles of building energy simulation, with a focus on the practical applications of building energy simulation tools to building design. Topics being covered include various model input parameters such as building geometry, orientation, climate, comfort, zoning, material properties, operation schedules, and HVAC systems. Building energy simulation software packages are illustrated and applied to the analysis of various case studies of buildings. Simulation output results are critically analyzed and compared to the results obtained from other building energy calculation methods. Recommended background: building physics (AREN 3024 or equivalent)

AREN 3026. BUILDING ENVELOPE DESIGN

Cat. I The course presents the basic principles of building envelope design, focusing primarily on its functional performance requirements and practical constructability aspects. Various building envelope systems are discussed and analyzed through case studies. Lecture topics include facade and roofing systems made of masonry, stone, concrete, timber, glass, and various metals. In addition, more complex building envelope strategies such as double skin facades, passive solar design, and building automation approaches, are discussed. The course includes design exercises and a case study project. Recommended background: architectural engineering systems and architectural drafting (AREN 2023, AREN 3001 or equivalent)

CE 402X. RESILIENT INFRASTRUCTURE FOR A CHANGING CLIMATE

This course is intended to provide students with understanding, knowledge, skills and tools to evaluate the risk and resilience of infrastructure components to climate change related and extreme weather events, and to conduct further studies and research on this subject. Methods to consider impact of climate change and extreme weather events on the infrastructure, understand different Intergovernmental Panel on Climate Change (IPCC) scenarios, utilize downscaled data for design of infrastructure, estimation of vulnerability, criticality, consequence, risk and resiliency, in both qualitative and quantitative way, and available adaptation frameworks and tools/software for increasing resiliency will be presented. Recommended background: basic knowledge of applied statistics (MA 2611 or equivalent), probability for applications (MA 2621 or equivalent), statics (CE 2000 or equivalent), structural engineering (CE 3010 or equivalent), and materials of construction (CE 3026 or equivalent).

CE 1030. CIVIL ENGINEERING AND COMPUTER FUNDAMENTALS

Cat. I This course introduces students to basic fundamentals of civil engineering, group dynamics, oral presentation skills, engineering report writing techniques, and uses of the computer. Basics of structural engineering, geotechnical engineering, environmental engineering, surveying, materials, and construction engineering and management are presented in this course through a collaborative group teaching approach. Background is provided to gain competence in operating systems, editors, and spreadsheets. Student groups complete weekly computer laboratory projects and develop oral presentations and written reports. No previous computer use skills are required or assumed. This course is recommended for freshman or sophomore students.

CE 2000. ANALYTICAL MECHANICS I

Cat. I This fundamental civil engineering course provides an introduction to the analysis of structures in static equilibrium. The focus of this course is a classical analysis of concurrent and non-concurrent equilibrium. A variety of engineering problems including trusses, machines, beams, rigid frames, and hydraulic structures involving concentrated and distributed loading systems are analyzed for external reactions and internal forces.

CE 2001. ANALYTICAL MECHANICS II

Cat. I This course provides an introduction to the relationship between analysis, design, and the behavior of materials under load. Theory and applications are developed that utilize simple and combined stress-strain behavior of members subjected to axial, torsional, and flexural loadings, with applications to beams, trusses, rigid frames, shafts, and tension and compression structures. Recommended background: CE 2000.

CE 2002. INTRODUCTION TO ANALYSIS AND DESIGN

Cat. I This course develops an understanding of classical and modern structura l analysis. Topics include loading systems, and the analysis of statically determinate and statically indeterminate beams, frames, trusses, structural floor systems for buildings, bridges, and other structural assemblies. Recommended background: CE 2000 and CE 2001. Suggested background: CE 1030.

CE 2020. SURVEYING

Cat. I This course develops fundamental skills in the theoretical and practical aspects of plane surveying through the use and care of modern instruments and the associated computations. Topics include the classification of errors incurred in observed field data and necessary correction applications, the use and care of surveying equipment, traversing, differential leveling, stadia and mapping, and electronic data transfer. Computer applications are used where appropriate.

CE 3006. DESIGN OF STEEL STRUCTURES

Cat. I This course covers the theory and practice of structural steel design. The structural design process for beams, columns, trusses, frames, and connections is based on Load and Resistance Factor Design (LRFD) specifications of the American Institute of Steel Construction. Recommended background: CE 2002 and CE 3010. Suggested background: CE 1030.

CE 3008. DESIGN OF REINFORCED CONCRETE STRUCTURES

Cat. I This course covers the theory and practice of reinforced concrete design. The structural design process for beams, columns, slabs, frames, flat slabs, footings, and retaining walls uses the ultimate strength design codes of the American Concrete Institute. Recommended background: CE 2002 and CE 3010. Suggested background: CE 1030.

CE 3010. STRUCTURAL ENGINEERING.

Cat. I This course provides an understanding of the practice of structural engineering. It builds upon the fundamental skills developed in CE 2000, CE 2001, and CE 2002 to present the principles of structures and their elements. The course provides a perspective for dealing with the issues of strength, stiffness, and stability. Although wood is the principle material used to develop the study of the interrelationship between analysis and design of structural systems, structural steel and reinforced concrete systems are also discussed. It also introduces students to the use of building codes for design criteria. The role of the structural engineer in the design process and cost factors are also discussed. Recommended background: CE 2000, CE 2001, and CE 2002. Suggested background: CE 1030.

CE 3020. PROJECT MANAGEMENT

Cat. I This course presents the fundamental concepts and process of project management applied to public and private works. The principle focus of the course is the management of civil engineering projects including planning, scheduling, organization and control, as well as management concepts of leadership, motivation, trust, project team development, division of work, and conflict resolution. Ancillary engineering and construction practices involving financial practices, construction documents, contract negotiation and administration, quality and safety control, insurance and bonding are covered. Recommended background: CE 1030.

CE 3022. LEGAL ASPECTS OF PROFESSIONAL PRACTICE

Cat. I The course focuses on the legal underpinnings that regulate the design and execution of construction projects and the relations between their participants. The subject is presented according to the various phases of a construction project, from inception to handover. The overall objective is to develop an awareness of the legal aspects that regulate the exercise of the architectural and civil engineering profession and of the environmental constraints of construction. Topics such as permitting process, design/engineering services and ethical issues are included.

CE 3024. CONTROL SURVEYING

Cat. II This course presents the principles and field procedures required in the design of vertical and horizontal control networks for large building and construction projects. Recommended background: CE 2020. Offered in 2016-17, and in alternating years thereafter.

CE 3025. PROJECT EVALUATION

Cat. I In this course students are provided with a systematic framework for evaluating the economic sustainability and financial aspects of a building investment through its life cycle: project definition, design, construction and operation. The course develops according to several interrelated topics: budgeting (square foot cost and parametric estimating) and economic feasibility analysis, financing mechanisms, cash flow analysis, (time-value -of -money factors, present worth and rate of return), life-cycle assessment (environmental impact analysis), taxes, depreciation and regulations as well as consideration of risks and uncertainties. Recommended background: AREN 2023. This course is offered in 2012-13.

CE 3026. MATERIALS OF CONSTRUCTION

Cat. I This course provides an understanding of the use and acquisition of engineering properties of construction materials. Topics include relationships between the structure of materials, their engineering properties, and the selection of suitable materials for applications involving strength, durability, and serviceability. Experimental laboratory procedures including design of experiments, data collection, analysis, and representation, and report writing are an integral part of the work. Recommended background: CE 1030 and CE 2001.

CE 3030. FUNDAMENTALS OF CIVIL ENGINEERING AUTOCAD

Cat. I This course introduces Civil Engineering students to fundamental uses of the AutoCAD software package. Basic two dimensional drawing techniques are covered. Advanced topics that may be covered include three dimensional drawing, rendering and animation. Students are required to become familiar with AutoCAD. Knowledge of the subject matter in at least two civil engineering design courses is expected background for this course.

CE 3031. BUILDING INFORMATION MODELING: SOFTWARE TOOLS AND PRINCIPLES

Cat. I This course introduces students to fundamental software applications for design and construction planning throughout the different phases of the development of civil engineering projects in a collaborative fashion as established by the principles of Building Information Modeling. The course covers the principles of basic 3D software environments, object creation and manipulation, assemblies of objects, surface and terrain modeling, building modeling, geographic and building information databases. Emphasis is given to the adaptability of this software to changes in design and to the production of graphic design documentation. Application software such as AutoCAD Civil 3D, Autodesk Revit and Navisworks are used in this course. Recommended background: CE 1030 or AREN 3001 or equivalent.

CE 3041. SOIL MECHANICS

Cat. I This is an introductory course dealing with the science and technology of earth materials with an emphasis on fundamental concepts of particulate mechanics. The topics which are discussed include fluid flow through porous media, deformation and shear characteristics of soil, consolidation, lateral earth pressure, and slope stability. Recommended background: CE 2000 and CE 2001. Suggested background: GE 2341.

CE 3044. FOUNDATION ENGINEERING

Cat. II Foundation engineering is a study of the applications of the principles of soil mechanics and structural theory to the analysis, design and construction of foundations for engineering works with the emphasis on the soil engineering aspects of soil structure interaction. Subsurface exploration techniques, design of rigid and flexible retaining structures, and design of, shallow and deep foundations are considered. Although the course deals mainly with aspects of the design of buildings and bridges, certain parts of the course (design of temporary trench bracing, for example) are very relevant to construction engineering. Recommended background: CE 3041. Suggested background: CE 3008. This course will be offered in 2016-17, and alternating years therefter.

CE 3050. TRANSPORTATION: TRAFFIC ENGINEERING

Cat. I This course provides an introduction to the field of transportation engineering with particular emphasis on traffic engineering. Topics covered include a description of the transportation industry and transportation modes; characteristics of drivers, pedestrians, vehicles and the roadway; traffic engineering studies, highway safety, principles of traffic flow, intersection design and control, capacity analysis, and level of service analysis. Suggested background: CE 2020.

CE 3051. TRANSPORTATION: PAVEMENT ENGINEERING

Cat. I This course provides an introduction to concepts required for design construction and management of pavements. Topics include Highway Drainage, Soil Engineering for Highway Design, Bituminous Materials, Design of Flexible and Rigid Pavements and Pavement Management. Knowledge of the subject matter in CE 3050 is helpful but not required.

CE 3059. ENVIRONMENTAL ENGINEERING

Cat. I This course provides an introduction to engineering aspects of environmental quality control. Students will learn fundamental science and engineering principles needed for environmental engineering, including concepts in chemistry, biology, physics, mass conservation, kinetics and reactor design. These principles are then applied to environmental engineering problems, including modeling of pollutants in natural systems and design of unit processes in engineered systems. Topics covered include environmental regulations, surface and ground water quality, drinking water treatment, wastewater treatment, air pollution, and hazardous waste management. Recommended background: college-level chemistry.

CE 3060. WATER TREATMENT

Cat. I This course provides in-depth coverage of processes used in water treatment. Topics include: review of water chemistry and drinking water standards, impurities in natural waters, aeration, water softening coagulation, flocculation, sedimentation, filtration, disinfection, taste and odor control, corrosion control, and iron and manganese removal. Recommended background: CE 3059 and ES 3004.

CE 3061. WASTE WATER TREATMENT

Cat. I This course provides in-depth coverage of processes used in wastewater treatment. Topics include: review of water quality standards, wastewater characteristics, application of biochemical oxygen demand, sources and effects of pollution, physical, chemical, and biological wastewater treatment processes, and waste sludge management. Recommended background: CE 3059 and ES 3004.

CE 3062. HYDRAULICS

Cat. I This course provides a background for applying the principles of fluid mechanics to analyze and design hydraulic and fluid flow systems for projects related to water resources and civil and environmental engineering. Topics include hydraulics in pipes and closed systems, open channels and rivers, water supply systems and water distribution networks, pump systems and turbines, wastewater collection and treatment systems, and coastal and other natural environmental systems. Course content includes water quality and energy considerations, as well as the development and application of hydraulic models. Recommended background: ES 3004.

CE 3070. URBAN AND ENVIRONMENTAL PLANNING

Cat. I This course introduces to the student the social, economic, political, and environmental factors that affect the complex relationship between the built and natural environment. By using the principles of sustainable development and the procedures of planning, the optimal development pattern may be examined, and the infrastructure (roads, water supply systems, waste-water treatment systems, shopping malls, etc.) necessary to support present and future growth patterns may be determined. The information necessary in planning, which involves conscious procedures of analysis, formulation of alternative solutions, rational assessment and deliberate choice in accordance with evaluation criteria, is obtained through extensive reading. As such, the course introduces a variety of topics of concern to engineers and environmental scientists. The course is intended not only for civil engineering majors, but also for students preparing for an IQP in areas of urban or environmental concerns.

CE 3074. ENVIRONMENTAL ANALYSIS

Cat. II This course provides a background in the principles and techniques of assessing areas of natural environment and applying environmental assessments to evaluate the inherent suitability of these areas for sustainable urban and resource-based uses. Topic areas include basic concepts in sustainability, landscape characterization and analysis, and environmental impact assessment and planning. The concepts and techniques developed in this course are useful for land use planning, site design, natural resources management, and the determination of the impact of engineering projects on the environment. Suggested background: CE 3059 or CE 3070. This course will be offered in 2016-17, and in alternating years thereafter.

CE 4007. MATRIX ANALYSIS OF STRUCTURES

Cat. II This course presents the principles of matrix analysis of structural elements and systems; fundamentals of matrix algebra, solution of simultaneous equations, matrix inversion; analysis of plane trusses, method of joints; displacement method, principle of virtual work, analysis of continuous beams, analysis of plane frames, plane trusses, analysis of building frames and bridges; computer aided structural analysis and principles of software development. Recommended background: CE 2002. This course will be offered in 2016-17, and in alternating years thereafter.

CE 4017. PRESTRESSED CONCRETE DESIGN

Cat. II This course covers analysis and design aspects of prestressed concrete structural elements and systems: principles of prestressing, materials for prestressing, high strength steel, flexural analysis and design methods; allowable stress and strength design methods; design of beams, load balancing, partial prestressing and cracking moment; design for shear, partial loss of prestress; deflections of prestressed concrete and precast construction; connections. Recommended background: CE 2002 and CE 3026. Suggested background: CE 3008. This course will be offered in 2016-17, and in alternating years thereafter.

CE 4054. TRANSPORTATION: INFRASTRUCTURE MATERIALS LABORATORY

Cat. II This laboratory-based course introduces standard laboratory soil and asphalt materials testing procedures, and effect of physical properties on performance of soils and asphalt pavements. The tests which are performed include: grain size analysis, Atterberg limits, specific gravity, permeability, compaction, compression and consolidation, and triaxial shear for soils, and penetration, consensus and source properties of aggregate, compaction, resilient modulus, indirect tensile strength and nondestructive testing of soils and hot mix asphalt. Instruction is provided through lecture, laboratory work and field trip. Recommended background: CE 3041 and CE 3052. This course will be offered in 2016-17, and in alternating years thereafter.

CE 4060. ENVIRONMENTAL ENGINEERING LABORATORY

Cat. I This course familiarizes students with the laboratory studies used to obtain the design parameters for water and wastewater treatment systems. The topics include laboratory experiments dealing with physical, chemical, and biological treatment systems. Recommended background: CE 3060 and CE 3061.

CE 4061. HYDROLOGY

Cat. II This course introduces the concepts and principles governing the distribution and transport of water in the environment, and also provides a background for quantifying hydrologic processes as required for the development of water resources projects. Topics include the hydrologic cycle, precipitation, evaporation and transpiration, infiltration, runoff analysis, streamflow, hydrologic routing, statistics and probability in hydrology, and the quantification of hydrologic processes for water quality protection. The course introduces field techniques and the use of hydrologic models for solving problems in water resources and hydrology. Recommended background: ES 3004. This course will be offered in 2016-17, and in alternating years thereafter.

CE 4063. TRANSPORT & TRANSFORMATIONS IN THE ENVIRONMENT

Cat. II In this course, students will learn to make quantitative relationships between human activities and the effects on water, soil, and air in the environment. Students will learn the scientific and engineering principles that are needed to understand how contaminants enter and move in the environment, how compounds react in the environment, how to predict their concentrations in the environment, and how to develop solutions to environmental problems. Topics to be covered may include water quality engineering (including microbial interactions), air quality engineering, and hazardous waste management. Recommended Background: familiarity with transport phenomena, such as in ES 3004 (Fluid Mechanics) and ES 3002 (Mass Transfer), and familiarity with reaction kinetics and reactor design, such as through CHE 3201 (Kinetics and Reactor Design). Background such as CE 3059 (Environmental Engineering), CE 3060 (Water Treatment), or CE 3061 (Wastewater Treatment) is suggested. This course will be offered in 2016-17, and in alternating years thereafter.

CE 4071. LAND USE DEVELOPMENT AND CONTROLS

Cat. I The purpose of this course is to provide an understanding of the regulatory framework under which land is developed and the built environment is designed. The quality of our environment depends upon the development which is permitted to take place and the controls which direct that development. Through this course, the student will learn the principles, methods, and techniques which a planner or engineer may use to plan and design the highest and best uses and development of land. In particular, the use and limits of zoning, special permits, subdivision control, and other tools with which a developer or planner should be familiar will be examined in detail.

CE 4600. HAZARDOUS AND INDUSTRIAL WASTE MANAGEMENT

Cat. II This course will cover concepts and techniques for handling hazardous and industrial wastes. Regulations governing hazardous waste, water & soil remediation concepts, and the fundamentals of waste treatment processes will be discussed. Instruction will be provided through lectures, fieldtrips, practitioner seminars, and class problem solving sessions. Recommended background: ES 3004 and CE 3059. This course will be offered in 2015-16, and in alternating years thereafter.

Graduate Courses

CE 501. PROFESSIONAL PRACTICE

Professional practices in engineering. Legal issues of business organizations, contracts and liability; business practice of staffing, fee structures, accounts receivable, negotiation and dispute resolution, and loss prevention; marketing and proposal development; project management involving organizing and staffing, budgeting, scheduling, performance and monitoring, and presentation of deliverables; professionalism, ethics and responsibilities.

CE 510. STRUCTURAL MECHANICS

Analysis of structural components: uniform and nonuniform torsion of structural shapes, analysis of determinate and indeterminate beams (including elastic foundation conditions) by classical methods, finite difference equations, numerical integrations, series approximation, elastic stability of beams and frames, lateral stability of beams, beams-columns, analysis of frames including the effect of axial compression. This course is offered by special arrangement only, based on expressed student interest.

CE 511. STRUCTURAL DYNAMICS

Analysis and design of beams and frames under dynamic loads; dynamics of continuous beams, multistory building frames, floor systems and bridges; dynamic analysis and design of structures subjected to wind and earthquake loads; approximate methods of analysis and practical design applications.

CE 515. SMART STRUCTURES

The goal of this course is to develop the student?s proficiency to design intelligent infrastructural systems (such as smart buildings and bridges), based on sensing, modeling, classification, regression and control theory. The ability to perform health monitoring system design and an understanding of the mechanism of automatic control systems are implicit in the concept of proficiency. The course format includes formal lectures, computer laboratory sessions, student presentations based on assigned term project. Guest speakers may be invited based on the topics covered and discussed in class. Prerequisites: Basic knowledge of dynamics and vibrations.

CE 519. ADVANCED STRUCTURAL ANAYLSIS

Energy methods in structural analysis, concepts of force method and displacement methods, methods of relaxation and numerical techniques for the solution of problems in buildings, and long-span structures and aircraft structural systems. Effects of secondary stress in structures. Course may be offered by special arrangement. (Prerequisites: Structural mechanics and undergraduate courses in structural analysis, differential equations.)

CE 524. FINITE ELEMENT METHOD AND APPLICATIONS

This course serves as an introduction to the basic theory of the finite element method. Topics covered include matrix structural analysis variation form of differential equations, Ritz and weighted residual approximations, and development of the discretized domain solution. Techniques are developed in detail for the one- and two-dimensional equilibrium problem. Examples focus on elasticity and heat flow with reference to broader applications. Students are supplied microcomputer programs and gain experience in solving real problems. (Prerequisites: Elementary differential equations, solid mechanics and heat flow. Note: Students cannot receive credit for both this course and CE/ME 5303 Applied Finite Element Methods.

CE 531. ADVANCED DESIGN OF STEEL STRUCTURES

Advanced design of steel members and connections; ultimate strength design in structural steel; codes and specifications; loads and working stresses; economic proportions; and buckling of slender elements and built-up sections, torsion, lateral-torsional buckling, beam-columns, design for lateral forces, and connections for building frames.

CE 533. PRESTRESSED CONCRETE STRUCTURES

CE 534. STRUCTURAL DESIGN FOR FIRE CONDITIONS

The development of structural analysis and design methods for steel and reinforced concrete members subjected to elevated temperatures caused by building fires. Beams, columns and rigid frames will be covered. The course is based on research conducted during the past three decades in Europe, Canada and the United States. Course may be offered by special arrangement. (Prerequisites: Knowledge of statically indeterminate structural analysis, structural steel design and reinforced concrete design.)

CE 535. INTEGRATION OF DESIGN AND CONSTRUCTION

As an interactive case study of the project development process, student groups design a facility and prepare a construction plan, including cost and schedule, to build the project. The students present their design-build proposal to participating industrial clients. Emphasis is on developing skills to generate, evaluate and select design alternatives that satisfy the needs of the owner and the constraints imposed by codes and regulations, as well as by the availability of construction resources. Emphasis is also in developing team-building skills and efficient communication. Computer-based methods for design, construction cost estimating and scheduling, and personal communications are extensively used. The interactive case study is specifically chosen to balance the content between design, construction engineering and management. Students taking this course are expected to have a background in at least two of these disciplines.

CE 538. PAVEMENT ANALYSIS AND DESIGN FOR HIGHWAYS AND AIRPORTS

This course is designed for civil engineers and will provide a detailed survey of analysis and design concepts for flexible and rigid pavements for highways and airports. The materials will cover elastic and inelastic theories of stress pavement components and currently used design methods, i.e., Corps of Engineers, AASHTO, etc. The use of finite element methods for pavement stress and deformation analysis will be presented. A review of pavement rehabilitation methods and processes will be presented. (Prerequisites: differential equations, construction materials, soil mechanics, computer literacy.)

CE 542. GEOHYDROLOGY

This course addresses engineering problems associated with the migration and use of subsurface water. An emphasis is placed on the geology of water-bearing formations including the study of pertinent physical and chemical characteristics of soil and rock aquifers. Topics include principles of groundwater movement, geology of groundwater occurrence, regional groundwater flow, subsurface characterization, water well technologies, ground-water chemistry and unsaturated flow.

CE 560. ADVANCED PRINCIPLES OF WATER TREATMENT

Theory and practice of drinking water treatment. Water quality and regulations; physical and chemical unit processes including disinfection, coagulation, clarification, filtration, membranes, air stripping, adsorption, softening, corrosion control, and other advanced processes.

CE 561. ADVANCED PRINCIPLES OF WASTEWATER TREATMENT

Theory and practice of wastewater treatment. Natural purification of streams; screening; sedimentation; flotation, thickening; aerobic treatment methods; theory of aeration; anaerobic digestion; disposal methods of sludge including vacuum filtration, centrifugation and drying beds; wet oxidation; removal of phosphate and nitrogen compounds; and tertiary treatment methods.

CE 562. BIOSYSTEMS IN ENVIRONMENTAL ENGINEERING

Application of microbial and biochemical understanding to river and lake pollution; natural purification processes; biological conversion of important elements such as C, N, S, O and P; biological aspects of wastewater treatment; disease producing organisms with emphasis on waterborne diseases; and quantitative methods used in indicator organism counts and disinfection.

CE 563. INDUSTRIAL WASTE TREATMENT

Legislation; the magnitude of industrial wastes; effects on streams, sewers and treatment units; physical, chemical and biological characteristics; pretreatment methods; physical treatment methods; chemical treatment methods; biological treatment methods; and wastes from specific industries. Lab includes characterization and treatment of typical industrial wastes.

CE 565. SURFACE WATER QUALITY MODELING

This course provides a quantitative analysis of the fate and transport of contaminants in surface water systems. Water quality models are developed using a mass balance approach to describe the transport, dispersal, and chemical/biological reactions of substances introduced into river and lake systems. Topics covered include water quality standards, model formulation and application, waste load allocation, and water quality parameters such as biochemical oxygen demand, dissolved oxygen, nutrients, and toxic chemicals.

CE 566. GROUNDWATER FLOW AND POLLUTION

This course provides a review of the basic principles governing ground water flow and solute transport, and examines the models available for prediction and analysis including computer models. Topics covered include mechanics of flow in porous media; development of the equations of motion and of conservation of solute mass; analytical solutions; and computer-based numerical approaches and application to seepage, well analysis, artificial recharge, groundwater pollution, salinity intrusion and regional groundwater analyses.

CE 567. HAZARDOUS WASTE: CONTAINMENT, TREATMENT AND PREVENTION

This course provides a survey of the areas associated with hazardous waste management. The course materials deal with identification of hazardous waste legislation, containment, storage, transport, treatment and other hazardous wastes management issues. Topics include hazardous movement and containment strategies, barrier design considerations, hazardous waste risk assessment, spill response and clean-up technologies, centralized treatment facilities, on-site treatment, in situ treatment, and industrial management and control measures. Design of selected containment and treatment systems, and a number of industrial case studies are also covered. This course is offered to students with varying backgrounds. Students interested in taking this course must identify a specific problem that deals with either regulation, containment of hazardous waste, treatment of hazardous waste or industrial source reduction of hazardous waste. This problem becomes the focal point for in-depth study. The arrangement of topics between the students and the instructor must be established by the third week. A knowledge of basic chemistry is assumed.

CE 570. CONTAMINANT FATE AND TRANSPORT

This course introduces the concepts of contaminant fate and transport processes in the environment, with consideration to exchanges across phase boundaries and the effects of reactions on environmental transport. Topics include equilibrium conditions at environmental interfaces, partitioning and distribution of contaminants in the environment, transport and exchange processes in surface water; dispersion, sorption, and the movement of non-aqueous phase liquids in ground-water, and local, urban and regional scale transport processes in the atmosphere.

CE 571. WATER CHEMISTRY

This course covers the topics of chemical equilibrium, acid/base chemistry, the carbonate system, solubility of metals, complexation and oxidation-reduction reactions. These principles will be applied to understanding of the chemistry of surface waters and groundwaters, and to understanding the behavior of chemical processes used in water and wastewater treatment.

CE 572. PHYSICAL AND CHEMICAL TREATMENT PROCESSES

This course presents the physical and chemical principles for the treatment of dissolved and particulate contaminants in water and wastewater. These concepts will provide an understanding of the design of commonly used unit operations in treatment systems. Applications will be discussed as well. Topics covered include water characteristics, reactor dynamics, filtration, coagulation/flocculation, sedimentation, adsorption, gas stripping, disinfection, and chemical oxidation.

CE 573. TREATMENT SYSTEM HYDRAULICS

Hydraulic principles of water, domestic wastewater and industrial wastewater systems. Hydraulic analysis and design of collection, distribution and treatment systems and equipment. Topics covered include pipe and channel flow, pump characteristics and selection, friction loss, corrosion and material selection.

CE 574. WATER RESOURCES MANAGEMENT

This course provides an introduction to water resources engineering and management, with an emphasis on water resources protection and water supply. Course content addresses technical aspects as well as the legal, regulatory and policy aspects of water resources management. Topics include surface water hydrology and watershed protection, development of water supplies, conjunctive use of groundwater and surface water, management of reservoirs and rivers, the role of probability and statistics, systems analysis techniques, and planning of water resources projects.

CE 580. ADVANCED PROJECT MANAGEMENT

This course develops an understanding of the managerial principles and techniques used throughout a construction project as they are applied to its planning, preconstruction and construction phases. The course emphasizes the integrative challenges of the human, physical and capital resources as experienced from the owner?s point of view in the preconstruction phase of a project. Through assignments and case studies, the course reviews the complex environment of the construction industry and processes, project costing and economic evaluation, project organization, value engineering, time scheduling, contracting and risk allocation alternatives, contract administration, and cost and time control techniques. (Prerequisites: CE 3020, CE 3021, CE 3023, or equivalent.)

CE 583. CONTRACTS AND LAW FOR CIVIL ENGINEERS

An introduction to the legal aspects of construction project management, emphasis on legal problems directly applied to the practice of project management, contracts and specifications documents, codes and zoning laws, and labor laws.

CE 584. ADVANCED COST ESTIMATING PROCEDURES

This course examines cost estimating as a key process in planning, designing and constructing buildings. Topics include the analysis of the elements of cost estimating; database development and management, productivity, unit costs, quantity surveys and pricing, and the application of these tools in business situations; marketing, sales, bidding, negotiating, value engineering, cost control, claims management and cost history. Computerization is evaluated as an enhancement to the process.

CE 586. BUILDING SYSTEMS

This course introduces design concepts, components, materials and processes for major building projects. The topics analyze the choice of foundations, structures, building enclosures and other major building subsystems as affected by environmental and legal conditions, and market and project constraints. Consideration is given to the functional and physical interfaces among building subsystems. Emphasis is given to the processes through which design decisions are made in the evolution of a building project. (Prerequisite: CE 3023, or equivalent.)

CE 587. BUILDING INFORMATION MODELING (BIM)

This course introduces the concept of Building Information Modeling (BIM) which is a relatively new approach in planning, design, construction and operation of constructed facilities in a technologically enabled and collaborative fashion. The course reviews fundamental concepts for collaboration and integration; it also reviews technologies that support the BIM approach and provides discipline specific as well as global perspectives on BIM. The course format includes formal lectures, computer laboratory sessions, student presentations based on assigned readings and a project developed collaboratively by the students throughout the course. Guest speakers may be invited based on the topics covered and discussed in class. Prerequisites: Basic knowledge of computers. Exposure to professional practice in any area of the Architecture / Engineering / Construction / Facilities Management (A/E/C/FM) industry is desirable. Students are not permitted to receive credit for CE 587 if they have previously received credit for CE 585 or CE 590A-BIM.

CE 590. SPECIAL PROBLEMS

Individual investigations or studies of any phase of civil engineering as may be selected by the student and approved by the faculty member who supervises the work.

CE 5303. APPLIED FINITE ELEMENT METHODS IN ENGINEERING

This course is devoted to the numerical solution of partial differential equations encountered in engineering sciences. Finite element methods are introduced and developed in a logical progression of complexity. Topics covered include matrix structural analysis variation form of differential equations, Ritz and weighted residual approximations, and development of the discretized domain solution. Techniques are developed in detail for the one- and two-dimensional equilibrium and transient problems. These numerical strategies are used to solve actual problems in heat flow, diffusion, wave propagation, vibrations, fluid mechanics, hydrology and solid mechanics. Weekly computer exercises are required to illustrate the concepts discussed in class. Students cannot receive credit for this course if they have taken the Special Topics (ME 593E) version of the same course or ME 533 or CE 524.

CE 5621. OPEN CHANNEL HYDRAULICS

This course begins with fundamentals of free surface flow, and includes engineering and environmental applications. Development of basic principles, including specific energy, momentum and critical flow. Rapidly varied, uniform and gradually varied steady flow phenomena and analysis. Density-stratified flow. Similitude considerations for hydraulic models. Optional topics: dispersion and heat transfer to atmosphere. Course may be offered by special arrangement.