Introduction to Architectural Engineering Systems, AREN 2023

The objective of this course is to introduce the functional parts and systems that make up a building as well as their interactions in delivering required sustainable performance. It encompasses foundations, structures, building enclosures, heating and air conditioning, electrical, plumbing and fire safety systems as well as concepts of building performance and aspects of pertinent building codes and standards. This course, in addition, incorporates basic principles of building science and green construction.

Architectural Graphics and Communication, AREN 3001

With this course, students develop an understanding of the architectural design process and the graphic means for communicating and exchanging design content during the execution of a building project. The course covers the following topics: Nature of design (problems, solutions and process), building siting and orientation aimed at reducing energy requirements, architectural drawings (plans, elevations and cross sections), isometric projections and detail drawings. Most of these topics build upon the systematic use of electronic modeling software. This course is lab oriented. Recommended background: AREN 2023.

Project Evaluation, CE 3025

In this course students are provided with a systematic framework for evaluating the economic sustainability and financial aspects of a building investment through its life cycle: project definition, design, construction and operation. The course develops according to several interrelated topics: budgeting (square foot cost and parametric estimating) and economic feasibility analysis, financing mechanisms, cash flow analysis, (time-value -of -money factors, present worth and rate of return), life-cycle assessment (environmental impact analysis), taxes, depreciation and regulations as well as consideration of risks and uncertainties. Recommended background: AREN 2023.

Architectural Design, AREN 3002

This course is a continuation of AREN 3001, and is designed to further the student’s knowledge in the process of architectural design through the studies of ideas, principles and methods of design. The concepts are explored with the completion of a project, including a residential or a commercial project, which at its completion, will be reviewed by invited guest critics. The course emphasizes the development of form, space, spatial relationships, materials, and architectural presentation techniques through the use of computer graphics. It introduces principles of passive approaches to reduce energy consumption. It also covers building codes in the design process.

Recommended background: AREN 3001.

Principles of HVAC Design for Buildings, AREN 3003

The course introduces principles and applications of mechanical systems that are required for environmental comfort, health, and safety of building occupants with a focus on energy efficiency and conservation. Topics include psychometrics, thermal comfort, building heating and cooling loads, fluid flow basics, HVAC components and systems, building envelop heat transfer, and energy requirements. In the course, students develop the ability to design and conduct computational modelling experiments and to analyze and interpret output data for selection between system alternatives in order to optimize energy use. Recommended background: Thermodynamics.

Introduction to Building Fire Safety System Design, FPE 3080

This course introduces principles and applications of building fire safety design. Topics include the interaction between fire, the building, and building occupants; systems that are used to detect, suppress, and control the spread of fire; and systems that facilitate the safe evacuation of occupants during fire. Building code requirements and engineering methods for analysis and design of building fire safety systems will be explored. Recommended background: Thermodynamics.

Building Electrical and Lighting Systems, AREN 3004

Introduction to the energy efficiency analysis and design of electrical and illumination systems in buildings. Topics include AC, DC, single-phase and three-phase circuits, transients, electrical and lighting loads, branch circuits, panel-boards, switching, system sizing, grounding, fault calculations, over-current protection, and design and specification of emergency power backup and alternative power systems. Provides general introduction to the visual environment, including subjective and objective scales of measurement, visual perception, photometry, brightness, luminance, illumination, natural and artificial lighting. Design problems, field measurements, computer, and other models will be used to explore major topics and energy savings options. Work includes study of applicable NFPA 70 (NEC) and related building codes. Recommended background: ECE 2010.

Advanced HVAC System Design, AREN 3006

Analysis of heating and cooling load requirements, considering building construction type, geometry, infiltration, occupancy effects, and daily load variations. Heating design addresses water heating systems, electrical heating, central heating, heating of low & high-rise buildings, selection of heaters, boilers, pumps, piping design. Cooling design addresses refrigerants, refrigeration cycle, evaporator, compressor, condenser, thermostatic expansion valves, refrigeration system control equipment, motor and motor control equipment, refrigeration accessories, calculation of refrigeration piping and absorption systems. Computer applications for heating and cooling load analysis will be introduced to develop energy saving solutions. Analytical techniques and building codes are discussed through case studies and design projects. Recommended background: AREN 3003, ES 3004.

Radiation Heat Transfer Applications, ES 3005

Radiation Heat Transfer Applications will develop the student’s knowledge of radiation heat transfer. Fundamentals of radiation will be covered. The primary focus of the course will be on applications of radiation heat transfer in the built environment. Two key areas will be solving radiation problems related to building fires (infrared) and building environmental heating (solar). Recommended background: MA 2051.

Legal Aspects of Professional Practice, CE 3022, Category I

The course focuses on the legal underpinnings that regulate the design and execution of construction projects and the relations between their participants. The subject is presented according to the various phases of a construction project, from inception to handover. The overall objective is to develop an awareness of the legal aspects that regulate the exercise of the architectural and civil engineering profession and of the environmental constraints of construction. Topics such as permitting process, design/engineering services and ethical issues are included.

  • Email a Friend
  • Bookmark this Page
  • Share this Page