Faculty Directory

Contact Information

Life Sciences & Bioengineering Center, 4007
Phone: +1-508-831-5384
Fax: +1-508-831-4121

View Personal Website

Kristen L. Billiar

Understanding the mechanisms by which mechanical forces regulate the development and healing of connective tissues and the pathogenesis of disease is becoming one of the foremost problems at the intersection of biomechanics and cell biology—it has spawned the field of mechanobiology.

In our lab we use precisely engineered, two-dimensional and three-dimensional constructs as model systems to study the effects of external internal (cell-generated) forces on cell behavior, matrix biochemistry, and the biomechanics of soft tissues and biomaterials. We have developed many innovative systems to modulate the cells’ mechanical environment by applying external multiaxial strain fields, creating compliant tissue boundary conditions, and controlling the surrounding matrix stiffness.

We also study the mechanics of soft tissue for augmentation and repair. To date, tissue systems studied include skin, heart valves, coronary and carotid arteries, myocardium, lung, small intestinal submucosa, and sternum.

At the undergraduate level, I enjoy relating the fundamentals of biomechanics to students both in the classroom and through authentic laboratory experiences, mentoring students in the lab, and advising capstone design teams. At the graduate level, I derive great pleasure from seeing my doctoral and master’s students transform into independent researchers, teaching tissue mechanics and tissue engineering, and writing grant proposals. I also enjoy interacting with the community and mentoring middle school students and their teachers, in both our laboratory and their classrooms.

Research Interests

  • Mechanobiology
  • Tissue Mechanics
  • Functional tissue engineering
  • Wound healing and regeneration
  • Biomaterials characterization


  • BS, Cornell University, 1991
  • MSE, University of Pennsylvania, 1992
  • PhD, University of Pennsylvania, 1998

Featured Publications

  • Throm Quinlan, A., Billiar, K., "Investigating the role of stiffness in the persistence of valvular interstitial cell activation." Journal of Biomedical Materials Research Part A. 2012 May 12. doi: 10.1002/jbm.a.34162.
  • Cirka, H., Koehler, S., Farr, W., Billiar, K., "Eccentric rheometry for viscoelastic characterization of small, soft, anisotropic, and irregularly shaped biopolymer gels and tissue biopsies." Annals of Biomedical Engineering Ann Biomed Eng. 2012, 40 (8) PMID: 22361829.
  • Gwyther TA, Hu JZ, Billiar KL, Rolle MW.,"Directed Cellular Self-Assembly to Fabricate Cell-Derived Tissue Rings for Biomechanical Analysis and Tissue Engineering" Journal of Visualized Experiments, JoVE 2011, Issue 57 doi: 10.3791/3366.
  • Kural, M.H., Cai, M., Tang, D., Gwyther, T., Zheng, J. and Billiar, K.L., "Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling," Journal of Biomechanics, 2012 Mar 15;45(5):790-8.
  • Throm Quinlan, A.M., Sierad, L.N., Capulli, A.K., Firstenberg, L.E., and Billiar, K.L., "Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro," PLoS ONE 6(8): e23272, 2011. (open access)
  • Abu-Rub, M., Billiar, K., van Es, M., Knight, A., Rodriquez, B., Zeugolis, D., McMahon, S., Windebank, A., and Pandit, A., "Nano-textured self-assembled aligned collagen hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein" Soft Matter, 2011, 7, 2770-2781. DOI: 10.1039/C0SM01062F
  • Balestrini, J., Skorinko, J., Hera, A., Gaudette, G., and Billiar, K., "Applying controlled inhomogeneous deformation for in vitro mechanobiological studies," Biomechan Model Mechanobiol, Volume 9(3):329-44, 2010. DOI 10.1007/s10237-009-0179-9; PMID: 20169395

View a Complete List 

  • Email a Friend
  • Bookmark this Page
  • Share this Page