Project Overview

This project aims to manufacture, design, and control the lower half of a self-balancing bipedal robot, named HURON. HURON can react to forces anywhere on the body and move accordingly to regain balance and exhibit a human-like gait for walking for future use in search and rescue.

The Goals of the project:

- Design and fabricate the lower body of a full-scale humanoid robot
- Take a step to react to external forces exerted on the robot

Robot Design

Design Considerations

- Follows proportions of 5' 10 " male
- Supports upper body integration
- 12 Degrees of Freedom (DOF)

First iteration of hip assembly

- Decreased total width by 10 cm
- Compacted mechanisms to reduce empty space
- Used a simpler bracket structure

Final iteration of hip assembly

Control System

- Implemented communication between Raspberry Pi 3, ODrive 3.6 motor controllers, BLDC motors, and an Arduino Mega.
- Verified a mathematical model to take an input distance and output the respective joint angles using inverse kinematics.
- Collect force data from force sensitive resistors on the feet to calculate Foot Force Stability Margin.
- Calculated a staple-shaped trajectory of points for HURON to interpret as a reaction to external forces via a step.

