WPI Department of Mathematical Sciences 503 GCE January, 2023

Name:_____

Exercise 1:

1. Show that if $f_n \to f$ uniformly on \mathbb{R} , each f_n is continuous, and $x_n \to x$, then $f_n(x_n) \to f(x)$.

2. Give an example of $\{f_n\}, f, \{x_n\}$ satisfying the conditions of 1., except $f_n \to f$ only pointwise, for which it is not true that $f_n(x_n) \to f(x)$.

 $\underline{\text{Exercise } 2}$:

Let (X, \mathcal{A}) be a measure space and α, β , two finite measures on \mathcal{A} . Let \mathcal{E} be a subset of \mathcal{A} such that the smallest σ -algebra in $\mathcal{P}(X)$ containing \mathcal{E} is \mathcal{A} . Assume that (i). $\alpha \leq \beta$, (ii). for all E in \mathcal{E} , $\alpha(E) = \beta(E)$, (iii). $\alpha(X) = \beta(X)$. Set $\mathcal{T} = \{T \in \mathcal{A} : \alpha(T) = \beta(T)\}$.

1. Let S, T be in \mathcal{T} such that $S \cap T = \emptyset$. Show that $S \cup T$ is in \mathcal{T} .

2. Let T be in \mathcal{T} such that there are A_1, A_2 in \mathcal{A} satisfying $T = A_1 \cup A_2$ with $A_1 \cap A_2 = \emptyset$. Show that A_1 and A_2 are in \mathcal{T} .

3. Let S, T be in \mathcal{T} . Show that $T \setminus S, T \cap S$, and $T \cup S$ are in \mathcal{T} .

4. Show that \mathcal{T} is a σ - algebra and infer that $\alpha = \beta$.

<u>Exercise 3</u>:

Let the functions $f_n \in L^p([0,1])$ for some $1 . Assume that <math>\sup_n ||f_n||_{L^p([0,1])} < \infty$.

1. Show that the sequence is equiintegrable, i.e., $\forall \varepsilon > 0, \exists \delta > 0$ such that for $A \subset [0, 1]$,

$$m(A) < \delta \Rightarrow \int_A |f_n| < \varepsilon$$

 $\forall n \in \mathbb{N}$. (Hint: write $\int_A |f_n| = \int |f_n| \chi_A$, and use Hölder's inequality).

2. Assume in addition that $f_n \to f$ in measure on [0, 1] for some function f, i.e., $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} m(\{x : |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Show that $f_n \to f$ in $L^1([0,1])$, i.e., $\lim_{n\to\infty} ||f_n - f||_{L^1([0,1])} = 0$.