WPI Department of Mathematical Sciences 503 GCE January, 2023

Name: \qquad

Exercise 1:

1. Show that if $f_{n} \rightarrow f$ uniformly on \mathbb{R}, each f_{n} is continuous, and $x_{n} \rightarrow x$, then $f_{n}\left(x_{n}\right) \rightarrow f(x)$.
2. Give an example of $\left\{f_{n}\right\}, f,\left\{x_{n}\right\}$ satisfying the conditions of 1 ., except $f_{n} \rightarrow f$ only pointwise, for which it is not true that $f_{n}\left(x_{n}\right) \rightarrow f(x)$.

Exercise 2:

Let (X, \mathcal{A}) be a measure space and α, β, two finite measures on \mathcal{A}. Let \mathcal{E} be a subset of \mathcal{A} such that the smallest σ-algebra in $\mathcal{P}(X)$ containing \mathcal{E} is \mathcal{A}. Assume that
(i). $\alpha \leq \beta$,
(ii). for all E in $\mathcal{E}, \alpha(E)=\beta(E)$,
(iii). $\alpha(X)=\beta(X)$.

Set $\mathcal{T}=\{T \in \mathcal{A}: \alpha(T)=\beta(T)\}$.

1. Let S, T be in \mathcal{T} such that $S \cap T=\emptyset$. Show that $S \cup T$ is in \mathcal{T}.
2. Let T be in \mathcal{T} such that there are A_{1}, A_{2} in \mathcal{A} satisfying $T=A_{1} \cup A_{2}$ with $A_{1} \cap A_{2}=\emptyset$. Show that A_{1} and A_{2} are in \mathcal{T}.
3. Let S, T be in \mathcal{T}. Show that $T \backslash S, T \cap S$, and $T \cup S$ are in \mathcal{T}.
4. Show that \mathcal{T} is a σ - algebra and infer that $\alpha=\beta$.

Exercise 3:

Let the functions $f_{n} \in L^{p}([0,1])$ for some $1<p<\infty$. Assume that $\sup _{n}\left\|f_{n}\right\|_{L^{p}([0,1])}<\infty$.

1. Show that the sequence is equiintegrable, i.e., $\forall \varepsilon>0, \exists \delta>0$ such that for $A \subset[0,1]$,

$$
m(A)<\delta \Rightarrow \int_{A}\left|f_{n}\right|<\varepsilon
$$

$\forall n \in \mathbb{N}$. (Hint: write $\int_{A}\left|f_{n}\right|=\int\left|f_{n}\right| \chi_{A}$, and use Hölder's inequality).
2. Assume in addition that $f_{n} \rightarrow f$ in measure on $[0,1]$ for some function f, i.e., $\forall \varepsilon>0$,

$$
\lim _{n \rightarrow \infty} m\left(\left\{x:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}\right)=0
$$

Show that $f_{n} \rightarrow f$ in $L^{1}([0,1])$, i.e., $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{1}([0,1])}=0$.

