Worcester Polytechnic Institute
Department of Mathematical Sciences
January 9, 2023

General Comprehensive Exam

Linear Algebra

Problem 1 Let $K^{n\times n}$ be the vector space of square n by n matrices with entries in the field K. Let $e_1, ..., e_n$ be the natural basis of K^n and E_{ij} be the matrix $e_i e_j^T$, $1 \le i, j \le n$.

- (a) Show how the product $E_{ij}E_{kl}$ can be simplified where $1 \leq i, j, k, l \leq n$.
- (b) Let f be a linear map from $K^{n\times n}$ to K such that for all A and B in $K^{n\times n}$, f(AB)=f(BA). Show that f is a multiple of the trace.

Problem 2 Let A be an $n \times n$ Hermitian matrix with complex entries.

- (a) Prove that every eigenvalue of A is real.
- (b) Prove: if \mathbf{u} and \mathbf{v} are eigenvectors for A belonging to distinct eigenvalues, then \mathbf{u} and \mathbf{v} are orthogonal.

Problem 3 Let A and B be symmetric $n \times n$ matrices with real entries.

- (a) Prove: if A and B commute, they are simultaneously diagonalizable. That is, if AB = BA, then there exists a basis for \mathbb{R}^n where each vector in the basis is an eigenvector for both A and B.
- (b) Illustrate, via a small counterexample, that AB = BA is a necessary condition.

Problem 4 Let A be an $n \times n$ real matrix and A^{\top} its transpose. Show that $A^{\top}A$ and A^{\top} have the same range.

Problem 5 Let n be a positive integer, and let $A = (a_{ij})_{i,j=1}^n$ be the $n \times n$ matrix with $a_{ii} = 2$, $a_{ii\pm 1} = -1$, and $a_{ij} = 0$ otherwise; that is,

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}.$$

Prove that every eigenvalue of A is a positive real number.

Problem 6 Consider the vector space $C_P[0, 2\pi] = \{f \mid f : [0, 2\pi] \to \mathbb{R} \text{ pcf}\}$ of all piecewise continuous real-valued functions defined on the interval $[0, 2\pi]$. The addition in this vector space is usual addition of functions and scalar multiplication is as usual also: f + g is the function defined by (f + g)(x) = f(x) + g(x) for $x \in [0, 2\pi]$ and cf is the function (cf)(x) = c(f(x)) for $x \in [0, 2\pi]$. The inner product we consider on this space is

$$\langle f(x), g(x) \rangle := \int_0^{2\pi} f(x)g(x) dx.$$

(a) Let W be the subspace of $\mathcal{C}_P[0,2\pi]$ spanned by the eight vectors

$$cos(x)$$
, $sin(x)$, $cos(2x)$, $sin(2x)$, ..., $cos(4x)$, $sin(4x)$.

Find an orthonormal basis for this subspace. [HINT: You don't have to do too much to adjust the above basis. Use standard formulas for integrals.]

(b) Consider the function

$$f(x) = \begin{cases} -1 & \text{if } 0 \le x < \pi; \\ 1 & \text{if } \pi \le x \le 2\pi. \end{cases}$$

Find the projection of f(x) onto subspace W.