GCE - Linear Algebra August 2023 No documents allowed

Exercise 1

Let V be an n-dimensional vector space over \mathbb{C} and A in $\mathcal{L}(V)$ a linear operator. (i). Assume that $A = \lambda I + N$ where $\lambda \in \mathbb{C}$, I is the identity operator, and N is nilpotent. Show that V is the direct sum of Ker A^n and Im A^n . (ii). Is V still the direct sum of Ker A^n and Im A^n for any A in $\mathcal{L}(V)$?

Exercise 2

Let K be \mathbb{R} or \mathbb{C} and A an n by n matrix with entries in K. Let $A = (a_{ij})_{1 \le i,j \le n} \in K^{n \times n}$ and $||A||_{\infty} = \sup_{x \in K^n, ||x||_{\infty} = 1} ||Ax||_{\infty}$. Show that $||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$.

$\underline{\text{Exercise } 3}$

Prove that an m by n matrix A with real entries has rank less or equal than r if and only if A can be expressed as a sum of r rank one matrices.

Exercise 4

Let A be an n by n real matrix and A^t its transpose. Show that A^tA and A^t have same range.