GCE - Linear Algebra

May 2023

Exercise 1

Let V be a finite-dimensional vector space and W a subspace of V. Let T and S be linear transformations on V.
(i). Show that $S^{-1} W=\{x \in V: S x \in W\}$ is a subspace of V.
(ii). Show that

$$
\operatorname{dim} S^{-1} W \leq \operatorname{dim} \operatorname{Ker} S+\operatorname{dim} W
$$

(iii). Show that the composition $T \circ S$ satisfies

$$
\operatorname{dim} \operatorname{Ker} S \leq \operatorname{dim} \operatorname{Ker} T \circ S \leq \operatorname{dim} \operatorname{Ker} T+\operatorname{dim} \operatorname{Ker} S .
$$

Exercise 2

Let V be a finite-dimensional space over \mathbb{R} with $\operatorname{dim} V=n$. Let $<,>$ be a positive definite scalar product on $V \times V$ and A a symmetric linear map from V to V. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of A.
(i). Show that

$$
\lambda_{n}=\sup _{x \in V,\|x\|=1}<A x, x>
$$

(ii). Let H be a subspace of V with dimension $n-1$. Let w_{1}, w_{2} be two independent vectors in V. Show that there is some x in $\operatorname{span}\left\{w_{1}, w_{2}\right\} \cap H$ such that $\|x\|=1$.
(iii). Let S be the set of all subspaces of V with dimension $n-1$. Show that

$$
\lambda_{n-1}=\inf _{H \in S} \sup _{x \in H,\|x\|=1}<A x, x>
$$

Exercise 3

Let A in $\mathbb{C}^{n \times p}$ and B in $\mathbb{C}^{p \times n}$ be two matrices.
(i). Let λ be an eigenvalue of $I+A B$ such that $\lambda \neq 1$. Show that λ is an eigenvalue of $I+B A$.
(ii). Show that $\operatorname{det}(I+A B)=\operatorname{det}(I+B A)$.

Exercise 4

Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a real matrix such that $a_{i j}>0$ for all $1 \leq i, j \leq n$. Recall the definition of the spectral radius

$$
\rho(A)=\max \{|\lambda|: \lambda \in \mathbb{C}, \lambda \text { is an eigenvalue of } A\},
$$

and the property $\rho(A)=\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{\frac{1}{k}}$ where $\|\|$ is a multiplicative norm.
Let $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right)$ be two vectors in \mathbb{R}^{n}. We say that $v>w$ if $v_{i}>w_{i}$ for all $i=1, \ldots, n . v \geq w, v<w, v \leq w$ are defined likewise.
(i). Let v be a vector in \mathbb{R}^{n} such that $v \geq 0$ and $v \neq 0$. Show that $A v>0$.
(ii). Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be a vector in \mathbb{C}^{n}. We define the vector $|v|=\left(\left|v_{1}\right|, \ldots,\left|v_{n}\right|\right)$. Show that $|A v| \leq A|v|$.
(iii). Show that $\rho(A)>0$.
(iv). Set $B=(\rho(A))^{-1} A$. Let x in \mathbb{C}^{n} be such that $B x=\lambda x, x \neq 0$ and $|\lambda|=1$. Show that $|x|$ is an eigenvector of B and conclude. Hint: Set $y=B|x|-|x|$.

