WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics I
 January, 2023

Note: Please show a clear logic of each solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. (20 points) Suppose that $X \sim \Gamma(a, b)$, i.e., the density function of X is $f(x)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}$ for $x>0$.
(a) Find $\mathrm{E}\left(X^{k}\right), k=1,2,3, \ldots$
(b) Let $X_{i}, i=1,2, \ldots, n$, be i.i.d. $\Gamma(a, b)$. Find the distribution of $Z=\frac{X_{1}}{\sum_{i=1}^{X_{i}}}$.
2. (20 points) Suppose that U_{1} and U_{2} are uniformly distributed over $[0,1]$ and are independent of each other; that is $U_{1}, U_{2} \stackrel{i n d}{\sim} U(0,1)$.
(a) Find the distribution of $X_{1}=\sqrt{-2 \log U_{1}} \cos \left(2 \pi U_{2}\right)$.
(b) Find the distribution of $X_{2}=\sqrt{-2 \log U_{1}} \sin \left(2 \pi U_{2}\right)$.
(c) Find the conditional distribution of $X_{1} \mid X_{2}$.
3. (20 points) The joint probability mass function of Y_{1}, \ldots, Y_{n} is

$$
f(y)=\frac{B(s+\alpha, n-s+\beta)}{B(\alpha, \beta)}, y_{i}=0,1, i=1, \ldots, n
$$

where $B(\cdot, \cdot)$ is the beta function and $s=\sum_{i=1}^{n} y_{i}$. Find the random variable, Z, such that $Y_{i} \mid Z$ are independent and identically distributed. Hence, deduce $\operatorname{Cor}\left(Y_{i}, Y_{j}\right), i, j=$ $1, \ldots, n$.
4. (20 points) Suppose that $X \sim N\left(\mu_{1}, \sigma^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma^{2}\right)$ are independent normal random variables.
(a) Characterize the collection of all real constants $c_{1}, c_{2}, c_{3}, c_{4}$ such that the random variables

$$
L_{1}=c_{1} X+c_{2} Y \text { and } L_{2}=c_{3} X+c_{4} Y
$$

are independent.
(b) Are the random variables

$$
V=\frac{(X+Y)}{\sqrt{2} \sigma} \text { and } W=\frac{(X-Y)}{\sqrt{2} \sigma}
$$

independent?
(c) Under the case $\mu_{1}=\mu_{2}$, determine the marginal distributions of V and W.
5. (20 points) The Truncated Standard Normal Distribution. Let $Z \sim \mathcal{N}(0,1)$. For a real number b, let $X_{b}=Z \mid Z<b$, that is, Z constrained to be less than b.
(a) Find the pdf of X_{b}.
(b) Find $\mathbb{E}\left[X_{b}\right]$.
(c) What is $\mathbb{E}\left[X_{0}\right]$, i.e. with $b=2$?

Your answers for the first two parts may include functions $\phi(\cdot)$ and $\Phi(\cdot)$, the standard normal pdf and cdf, respectively.
6. (20 points) Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from a Poisson distribution with mean θ. We are interested in estimating $g(\theta)=P\left(X_{1}=0\right)=e^{-\theta}$. Consider the following two estimators:

$$
T_{n, 1}=e^{-\bar{X}_{n}} \quad \text { and } \quad T_{n, 2}=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i}=0\right)
$$

where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and I is an indicator function.
a) Find the asymptotic distribution of $T_{n, 1}$.
b) Find the asymptotic distribution of $T_{n, 2}$.
c) Which estimator is more efficient in estimating $g(\theta)$ when a large sample size is available? Show your argument clearly.

