WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics II August, 2023

Note: Please show a clear logic of each solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. (20 points) Let X_1, X_2, \dots, X_n be independent identically distributed random variables with probability mass function

$$f(x) = P(X = x) = \frac{1}{x^{\nu}\zeta(\nu)},$$

where $\nu > 1$ and $x = 1, 2, 3, \cdots$. Here the zeta function

$$\zeta(\nu) = \sum_{r=1}^{\infty} \frac{1}{x^{\nu}},$$

for $\nu > 1$.

- a) Find a minimal sufficient statistic for ν .
- b) Is the statistic found in a) complete? (prove or disprove)
- c) Give an example of a sufficient statistic that is strictly not minimal.
- 2. (20 points) Let X_1, X_2, \dots, X_n be a random sample from the uniform distribution on $(0, \theta)$ where $\theta > 0$ is a parameter. Let

$$T = \max_{1 \le i \le n} X_i$$

and let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

be the sample mean of X_i

Find $E(\bar{X}|T=t)$ without trying to find the conditional distribution of X given T=t.

3. (20 points) Suppose that X follows the Pareto(θ) distribution, i.e., the density function of X is

$$f(x) = \frac{\theta}{x^{\theta+1}}, \quad x > 1, \theta > 1.$$

Let X' be an independent, identically distributed copy of X. Consider the Gini coefficient γ of X, which is defined by

$$\gamma = \frac{1}{2} \frac{\mathrm{E}(|X - X'|)}{\mu}$$

with $\mu = E(X)$.

- (a) Let X_1, \ldots, X_n be an iid sample from the Pareto(θ) distribution. Find the maximum likelihood estimator $\hat{\gamma}$ of γ based on X_1, \ldots, X_n . [Note that $\gamma = \frac{1}{2\theta 1}$.]
- (b) Show that $\hat{\gamma}$ is an asymptotically normal estimator of γ , and find its asymptotic variance.
- 4. (20 points) Consider testing $H_0: \theta \leq \theta_0$ versus $H_A: \theta > \theta_0$ using one observation X from the desnity:

$$f_X(x;\theta) = \begin{cases} \frac{\theta e^{\theta x}}{2sinh(\theta)} & |x| \le 1\\ 0 & otherwise \end{cases}$$

where $sinh(\theta) = \frac{e^{\theta} - e^{-\theta}}{2}$ is the hyperbolic sine function.

- (a) Find the UMP level- α test for $0 < \alpha < 1$.
- (b) For a given X = x and α , what inequality would you need to solve in order to invert the test from part (a) to make a 1α upper confidence bound for θ ?
- 5. (20 points) Suppose that X_1, X_2, \dots, X_n are independent random variables with $X_i \sim N(i\theta, 1)$ for $i = 1, \dots, n$.
 - (a) Find the maximum likelihood estimator of θ .
 - (b) Find the variance of MLE from part (a).
 - (c) Compare this variance from part (b) with the Cramer-Rao lower bound for unbiased estimation of θ .
- 6. (20 points) Consider independent estimators of $\hat{\theta}_i$, $i = 1, ..., \ell$, with mean θ and variance σ^2/n_i (known). Consider the combined estimators of θ of the form, $\hat{\theta} = \sum_{i=1}^{\ell} a_i \hat{\theta}_i$, where $a_i \geq 0$ are unknown constants.
 - (a) Obtain the minimum variance unbiased estimator of θ . Describe the estimator and give its standard error. What is a good thing about this estimator?
 - (b) Find the least squares estimator (LSE) of θ . Is it different from the estimator in (a)?
 - (c) Discuss how the Central Limit Theorem allows you to approximate the distribution of $\hat{\theta}$?