WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 540 Probability and Mathematical Statistics I May, 2024

Note: Please show a clear logic of each solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. (20 points) Say $X \sim \mathcal{N}(0,1)$ and $Y \sim \exp (1)$ and that X and Y are independent. Let $Z=\frac{X}{Y+1}$. Find $E[Z]$ and $\operatorname{Var}(Z)$. You may express your answer in terms of the "exponential integral" $E i(r)=-\int_{-r}^{\infty} e^{-t} / t d t$.
2. (20 points) Suppose that (X, Y) has a joint probability density function $f_{X Y}(x, y)=$ $8 x y \mathbb{I}(0 \leq x \leq y \leq 1)$.
(a) Let $g(x)=E(Y \mid X=x)$. Show that for any function $h:(0,1) \rightarrow \mathbb{R}$, we have $E\left[(Y-g(X))^{2}\right] \leq E\left[(Y-h(X))^{2}\right]$.
(b) Compute the correlation between $Y-g(X)$ and X^{2}.
3. (20 points) Let $X \sim$ Uniform $[0,1]$ and $X_{n}=X+I\left(X \in A_{n}\right)$, where $I(\cdot)$ is the indicator function, A_{n} is a series of intervals: $A_{1}=[0,1], A_{2}=[0,1 / 2], A_{3}=[1 / 2,1], A_{4}=[0,1 / 3]$, $A_{5}=[1 / 3,2 / 3], A_{6}=[2 / 3,1], A_{7}=[0,1 / 4], A_{8}=[1 / 4,2 / 4] \ldots$
(a) Does X_{n} converge in probability to X ? Prove your answer.
(b) Does X_{n} converge to a distribution? If so, what is the limit distribution? If not, explain why.
(c) Does X_{n} converge almost surely to X ? Why or why not?
4. (20 points) Let X_{1} and X_{2} be independent Gamma (ν_{i}, λ) random variables for $i=1,2$. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$.
(a) Find the joint distribution of Y_{1} and Y_{2}.
(b) Find the marginal distributions of Y_{1} and Y_{2}.
5. (20 points) Suppose that $Y_{i}, i=1, \cdots, n$ are independent random variables with the following distribution:

$$
\begin{align*}
& Y \mid \lambda \sim \operatorname{Pois}(\lambda) \\
& \log \lambda \mid \mu, \sigma^{2} \sim N\left(\mu, \sigma^{2}\right) \tag{1}
\end{align*}
$$

(a) Find the conditional mean of Y, i.e., $E\left(Y \mid \mu, \sigma^{2}\right)$.
(b) Find the conditional variance of Y, i.e., $\operatorname{Var}\left(Y \mid \mu, \sigma^{2}\right)$.
(c) Find the conditions such that (1) $E\left(Y \mid \mu, \sigma^{2}\right)=\operatorname{Var}\left(Y \mid \mu, \sigma^{2}\right)$, (2) $E\left(Y \mid \mu, \sigma^{2}\right)<$ $\operatorname{Var}\left(Y \mid \mu, \sigma^{2}\right)$, and (3) $E\left(Y \mid \mu, \sigma^{2}\right)>\operatorname{Var}\left(Y \mid \mu, \sigma^{2}\right)$.
(d) Please discuss conceptually (no mathematical deduction needed) whether the unconditional distribution of Y is still Poisson. Why or why not?
6. (20 points) Consider the joint probability density function of (U, V, W, X),

$$
f(u, v, w, x)=C^{-1} I\left(u \leq e^{-\frac{1}{2} x^{2}}\right) I\left(v \leq \frac{1}{1+x^{2}}\right) I\left(w \leq \frac{e^{x}}{1+e^{x}}\right)
$$

$0<u, v, w<1,-\infty<x<\infty$, where C is positive constant, and $I(\cdot)$ is the indicator function with $I(a \leq t)=1$ and $I(a>t)=0$.
(a) Write down a form for C and show that it is actually finite.
(b) Find the probability density function, $f(x)$.
(c) Show that $\mathrm{E}(X)$ and $\operatorname{Var}(X)$ exist. In addition, show that the moment generating function of X exists.

