WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics II May, 2024

Note: Please show a clear logic of each solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

- 1. (20 points) Let $X_1, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2), \mu \neq 0$. Define $T_n = \frac{1}{X_n}$, where $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) What is the exact variance $Var(T_n)$ at a given n?
 - (b) Find an asymptotic variance of T_n .
- 2. (20 points) Say X_1, \ldots, X_n are drawn from an autoregressive process where $X_1 \sim \mathcal{N}\left(\theta, \frac{1}{1-\rho^2}\right)$ and for $j = 2, \ldots, n, X_j | X_{j-1}, X_{j-2}, \ldots, X_1 \sim \mathcal{N}\left(\rho X_{j-1} + (1-\rho)\theta\right)$ where $0 \le \rho < 1$ is a **known** constant and parameter $\theta \in \mathbb{R}$ is unknown.
 - (a) Show that this distribution is from an exponential family, and find the sufficient statistic T.
 - (b) Find the Cramér Rao lower bound for unbiased estimators of θ
 - (c) Find the MLE for θ and show that it is unbiased
- 3. (20 points) Suppose $X_1, X_2, X_3, \cdots, X_n \stackrel{iid}{\sim} N(\mu, k^2 \mu^2)$, where k > 0 is known and $\mu > 0$.
 - (a) Find a sufficient statistics.
 - (b) Is the statistic found in (a) a minimal sufficient statistics? prove or disprove your answer.
 - (c) Is the statistic found in (a) a complete statistics? prove or disprove your answer.
- 4. (20 points) Let X_i , $i = 1, \dots, n$ be i.i.d. $N(\mu, \sigma^2)$ random variables. Suppose that μ is known and consider estimates of σ^2 of the form,

$$S^{2}(k) = \frac{1}{k} \sum_{i=1}^{n} (X_{i} - \mu)^{2}$$

where k is a constant to be chosen. Determine the value of k which gives the smallest mean square error.

5. (20 points) For n > 1, let Y_1, \ldots, Y_n be iid with common density

$$f_Y(y) = \sqrt{\frac{2}{\pi}} \frac{y^2}{\theta^3} \exp(-\frac{y^2}{2\theta^2}), \quad y \ge 0,$$

where $\theta > 0$ is unknown.

(a) Find a sufficient statistic for θ .

- (b) Show that $E(Y_i^2) = 3\theta^2$. Based on that, find the uniformly minimum variance unbiased estimator (UMVUE) for θ^2 . [*Hint: the probability density function of* gamma distribution is $g(z) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\beta z}$ for z > 0, $\alpha > 0$, $\beta > 0$. Also, $\Gamma(5/2) = \frac{3}{4}\sqrt{\pi}$.]
- 6. (20 points) Let $X_1, \ldots, X_n \mid \lambda \stackrel{ind}{\sim} \text{Poisson}(\lambda)$. Let \bar{X} and S^2 denote respectively the sample mean and the sample variance, and let $T_a = a\bar{X} + (1-a)S^2, 0 \le a \le 1$.
 - (a) Find a form for $\text{Std}(T_a)$ in terms of a and quantities such as $\text{Std}(S^2)$.
 - (b) Deduce A and B such that $A \leq \text{Std}(T_a) \leq B$.
 - (c) Argue that $\operatorname{Std}(\bar{X}) \leq \operatorname{Std}(T_a)$ for all a.

[Note that $\operatorname{Std}(X) = +\sqrt{\operatorname{Var}(X)}$.]