WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541 Probability and Mathematical Statistics II
 May, 2024

Note: Please show a clear logic of each solution. If you cannot solve a problem perfectly, still show your idea on solving the problem.

1. (20 points) Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right), \mu \neq 0$. Define $T_{n}=\frac{1}{X_{n}}$, where $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
(a) What is the exact variance $\operatorname{Var}\left(T_{n}\right)$ at a given n ?
(b) Find an asymptotic variance of T_{n}.
2. (20 points) Say X_{1}, \ldots, X_{n} are drawn from an autoregressive process where $X_{1} \sim \mathcal{N}\left(\theta, \frac{1}{1-\rho^{2}}\right)$ and for $j=2, \ldots, n, X_{j} \mid X_{j-1}, X_{j-2}, \ldots, X_{1} \sim \mathcal{N}\left(\rho X_{j-1}+(1-\rho) \theta\right)$ where $0 \leq \rho<1$ is a known constant and parameter $\theta \in \mathbb{R}$ is unknown.
(a) Show that this distribution is from an exponential family, and find the sufficient statistic T.
(b) Find the Cramér Rao lower bound for unbiased estimators of θ
(c) Find the MLE for θ and show that it is unbiased
3. (20 points) Suppose $X_{1}, X_{2}, X_{3}, \cdots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, k^{2} \mu^{2}\right)$, where $k>0$ is known and $\mu>0$.
(a) Find a sufficient statistics.
(b) Is the statistic found in (a) a minimal sufficient statistics? prove or disprove your answer.
(c) Is the statistic found in (a) a complete statistics? prove or disprove your answer.
4. (20 points) Let $X_{i}, i=1, \cdots, n$ be i.i.d. $N\left(\mu, \sigma^{2}\right)$ random variables. Suppose that μ is known and consider estimates of σ^{2} of the form,

$$
S^{2}(k)=\frac{1}{k} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}
$$

where k is a constant to be chosen. Determine the value of k which gives the smallest mean square error.
5. (20 points) For $n>1$, let Y_{1}, \ldots, Y_{n} be iid with common density

$$
f_{Y}(y)=\sqrt{\frac{2}{\pi}} \frac{y^{2}}{\theta^{3}} \exp \left(-\frac{y^{2}}{2 \theta^{2}}\right), \quad y \geq 0
$$

where $\theta>0$ is unknown.
(a) Find a sufficient statistic for θ.
(b) Show that $E\left(Y_{i}^{2}\right)=3 \theta^{2}$. Based on that, find the uniformly minimum variance unbiased estimator (UMVUE) for θ^{2}. [Hint: the probability density function of gamma distribution is $g(z)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\beta z}$ for $z>0, \alpha>0, \beta>0$. Also, $\Gamma(5 / 2)=$ $\frac{3}{4} \sqrt{\pi}$.]
6. (20 points) Let $X_{1}, \ldots, X_{n} \mid \lambda \stackrel{i n d}{\sim} \operatorname{Poisson}(\lambda)$. Let \bar{X} and S^{2} denote respectively the sample mean and the sample variance, and let $T_{a}=a \bar{X}+(1-a) S^{2}, 0 \leq a \leq 1$.
(a) Find a form for $\operatorname{Std}\left(T_{a}\right)$ in terms of a and quantities such as $\operatorname{Std}\left(S^{2}\right)$.
(b) Deduce A and B such that $A \leq \operatorname{Std}\left(T_{a}\right) \leq B$.
(c) Argue that $\operatorname{Std}(\bar{X}) \leq \operatorname{Std}\left(T_{a}\right)$ for all a.
$[$ Note that $\operatorname{Std}(X)=+\sqrt{\operatorname{Var}(X)}$.]

