WORCESTER POLYTECHNIC INSTITUTE

THIRTY-THIRD ANNUAL INVITATIONAL MATH MEET OCTOBER 20, 2023 INDIVIDUAL EXAM QUESTION SHEET

Directions: Please write your answers on the INDIVIDUAL ANSWER SHEET provided. This part of the contest is 45 minutes. Calculators and other electronics MAY NOT be used. Questions 1-4 are worth 1 point each, questions 5-8 are worth 2 points each, and questions 9-11 are worth 3 points each.

1 point each

1. Find a polynomial of the form $x^{6}+a x^{5}+b x^{4}+c x^{3}+d x^{2}+e x+f$ with a, b, c, d, e, f integers which has $\sqrt{2}+\sqrt[3]{3}$ as a root.
Solution: We can solve this by rearranging, cubing, rearranging, and squaring $x-(\sqrt{2}+\sqrt[3]{3}$. We get

$$
\begin{aligned}
x-\sqrt{2}-\sqrt[3]{3} & =0 \\
\sqrt[3]{3} & =x-\sqrt{2} \\
3 & =(x-\sqrt{2})^{3}=x^{3}-3 \sqrt{2} x^{2}+6 x-2 \sqrt{2} \\
\sqrt{2}\left(3 x^{2}+2\right) & =x^{3}+6 x-3 \\
2\left(3 x^{2}+2\right)^{2} & =\left(x^{3}+6 x-3\right)^{2} \\
x^{6}-6 x^{4}-6 x^{3}+12 x^{2}-36 x-1 & =0
\end{aligned}
$$

2. For real numbers x and y, simplify $\left(x^{\frac{1}{3}}-y^{\frac{1}{3}}\right)\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)$.

Solution: We expand out to get

$$
\begin{aligned}
\left(x^{\frac{1}{3}}-y^{\frac{1}{3}}\right)\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}\right) & =x^{\frac{1}{3}}\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)-y^{\frac{1}{3}}\left(x^{\frac{2}{3}}+x^{\frac{1}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}}\right) \\
& =x+x^{\frac{2}{3}} y^{\frac{1}{3}}+y^{\frac{2}{3}} x^{\frac{1}{3}}-y^{\frac{1}{3}} x^{\frac{2}{3}}-x^{\frac{1}{3}} y^{\frac{2}{3}}-y \\
& =x-y
\end{aligned}
$$

3. Compute $\log _{10}\left(2^{4^{5}}\right)+\log _{10}\left(5^{2^{10}}\right)$.

Solution: We compute

$$
\begin{aligned}
\log _{10}\left(2^{4^{5}}\right)+\log _{10}\left(5^{2^{1} 0}\right) & =4^{5} \log _{10}(2)+2^{10} \log _{10}(5) \\
& =1024\left(\log _{10}(2)+\log _{10}(5)\right)=1024 \cdot \log _{10} 10=1024
\end{aligned}
$$

4. Let \mathbf{A} and \mathbf{B} be vectors in \mathbb{R}^{3}. Simplify $((\mathbf{A} \times \mathbf{B}) \times \mathbf{A}) \bullet 2 \mathbf{A}$.

Solution: The vector $\mathbf{P}=((\mathbf{A} \times \mathbf{B}) \times \mathbf{A})$ is a cross product, so is perpendicular to each of the factors that we get it from, so \mathbf{P} is perpendicular to $\mathbf{A} \times \mathbf{B}$, and more importantly here, \mathbf{P} is perpendicular to \mathbf{A}. Thus $\mathbf{P} \bullet 2 \mathbf{A}=2(\mathbf{P} \bullet \mathbf{A})=2 \cdot 0=2$.

2 points each

5. Express $\frac{3}{8}$ in base 7 .

Solution: In base 7, the first term is $\frac{2}{7}$, leaving us with the problem of computing $\frac{3}{8}-\frac{2}{7}=\frac{5}{56}$ in base 7. The first term of this is $\frac{4}{49}$, leaving us with the problem of computing $\frac{5}{56}-\frac{4}{49}=\frac{3}{392}$ in base 7. The first term of this is $\frac{2}{343}$, leaving us with the problem of computing $\frac{3}{392}-\frac{2}{343}=\frac{5}{2744}$. At this point we have enough of a pattern to hope the next term is $\frac{4}{2401}$, which sure enough it is, so we get that $\left(\frac{3}{8}\right)_{7}=0 . \overline{24}$.
6. Given the complex number $z=3 \sqrt{3}+3 i$, what is the smallest positive power of z which lies on the negative real axis?

Solution: In polar, we get that $z=3 \sqrt{3}+3 i$ has magnitude $\sqrt{(3 \sqrt{3})^{2}+3^{2}}=6$, and angle $\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$, so $z=\left(6, \frac{\pi}{6}\right)$ in polar. For a power of this to lie on the negative real axis, we need $\left(\frac{\pi}{6}\right)^{k}$ to be a multiple of π, which first happens for $k=6$.
7. What are the solutions to $\cos (2 x)=\cos (x)$ for $0 \leq x \leq \pi$?

Solution: We use the double angle formula to get the equivalent equation $2 \cos ^{2}(x)-1=$ $\cos (x)$ for $0 \leq x \leq \pi$, which we can simplify to $2 \cos ^{2}(x)-\cos (x)-1=0$ and factor as $(2 \cos (x)+1)(\cos (x)-1)=0$, so we need $\cos (x)=1$ or $\cos (x)=-\frac{1}{2}$. For $0 \leq x \leq \pi$, the only values that make this true are $x=0$ and $x=\frac{2 \pi}{3}$.
8. Find all real numbers x which satisfy $\left(\frac{x}{x+2}\right)^{2} \geq 9$.

Solution: We need to solve $\frac{x^{2}}{(x+2)^{2}} \geq 9$, or equivalently, $x^{2} \geq 9 x^{2}+36 x+36$. Subtracting we get the system $8 x^{2}+36 x+36 \leq 0$, and we divide both sides by 4 to get $2 x^{2}+9 x+9 \leq 0$. We can factor to get $(2 x+3)(x+3) \leq 0$, so we need $x \geq-3$ and $x \leq-\frac{3}{2}$. This is almost correct, except we need to note our original inequality is undefined at $x=2$, so the final answer is $[-3,-2) \cup\left(-2,-\frac{3}{2}\right]$.

3 points each

9. Consider $P(x)=(1+x)^{1000}+x(1+x)^{999}+x^{2}(1+x)^{998}+\ldots+x^{999}(1+x)+x^{1000}$. What is the sum of the coefficients of $P(x)$?
Solution: We find the sum of the coefficients of a polynomial by plugging in $x=1$. Here we get then, $P(1)=2^{1000}+2^{999}+2^{998}+\ldots+2^{2}+2+1$, or the sum $\sum_{i=0}^{1000} 2^{i}$, which equals $2^{1001}-1$.
10. What is the square root of $99 \cdot 100 \cdot 101 \cdot 102+1$?

Solution: We can do this in general. If we want the square root of $(x)(x+1)(x+2)(x+3)+1=$ $x^{4}+6 x^{3}+11 x^{2}+6 x+1$, we get that it is $\left(x^{2}+3 x+1\right)^{2}$, which says here that the square root of $99 \cdot 100 \cdot 101 \cdot 102+1$ is $99^{2}+3 \cdot 99+1=10099$.
11. Find $\cos \left(18^{\circ}\right)$.

Solution: We could solve this geometrically, but for purposes of writing it here, let's use our trig identities. We start by taking sin of both sides of $2 \cdot 18^{\circ}=90^{\circ}-3 \cdot 18^{\circ}$, then using our double angle formula and the relation between sin and cos to get that $2 \sin \left(18^{\circ}\right) \cos \left(18^{\circ}\right)=$ $\cos \left(3 \cdot 18^{\circ}\right)=4 \cos ^{3}\left(18^{\circ}\right)-3 \cos \left(18^{\circ}\right)$, the last step coming from the triple angle formula. Rearranging, we get that $\cos \left(18^{\circ}\right)\left(2 \sin \left(18^{\circ}\right)-4 \cos ^{2}\left(18^{\circ}\right)+3\right)=0$, and since $\cos \left(18^{\circ}\right) \neq 0$ we can divide through by it and use $\cos ^{2}(x)=1-\sin ^{2}(x)$ to get that $4 \sin ^{2}\left(18^{\circ}\right)+2 \sin \left(18^{\circ}\right)-1=0$. With the quadratic formula we get that $\sin \left(18^{\circ}\right)=\frac{-1+\sqrt{5}}{4}$, the positive root.
And thus we get $\cos \left(18^{\circ}\right)=\sqrt{1-\sin ^{2}\left(18^{\circ}\right)}=\sqrt{1-\left(\frac{-1+\sqrt{5}}{4}\right)^{2}}=\sqrt{\frac{5}{8}+\frac{\sqrt{5}}{8}}$.

