WORCESTER POLYTECHNIC INSTITUTE
 THIRTY-THIRD ANNUAL INVITATIONAL MATH MEET OCTOBER 20, 2023 TEAM EXAM QUESTION SHEET

Directions: Please write your answers on the TEAM ANSWER SHEET provided. This part of the contest is 45 minutes. All 14 problems are counted equally. Calculators and other electronics MAY NOT be used.

1. Simplify $3333^{4444}+4444^{3333} \bmod 7$.

Solution: We can first reduce each of the bases $\bmod 7$, by noting $3333=7 \cdot 476+1$ and $4444=7 \cdot 634+6$, so we get

$$
\begin{aligned}
3333^{4444}+4444^{3333} & \equiv 1^{4444}+6^{3333} \quad \bmod 7 \\
& \equiv 1+(-1)^{3333} \bmod 7 \\
& \equiv 1+(-1) \quad \bmod 7 \\
& \equiv 0 \quad \bmod 7,
\end{aligned}
$$

as $6 \equiv-1 \bmod 7$.
2. What is the prime factorization of $1,005,010,010,005,001$?

Solution: This number has structure (it is symmetric at least) so hopefully it is some number raised to a power. We see $1000^{5}=10^{15}$ is just slightly less than this number, so let's see what we get by going up a little:

$$
\begin{aligned}
& 1,001^{1}=1,001 \\
& 1,001^{2}=1,002,001 \\
& 1,001^{3}=1,002,001,000+1,002,001=1,003,003,001 \\
& 1,001^{4}=1,003,003,001,000+1,003,003,001=1,004,006,004,001 \\
& 1,001^{5}=1,004,006,004,001,000+1,004,006,004,001=1,005,010,010,005,001 .
\end{aligned}
$$

Thus we just need to factor 1,001 . We do this by inspection, trying small factors, noting 11 divides 1,001: $1,001=11 \cdot 91=11 \cdot 13 \cdot 7$. Thus we get that

$$
1,005,010,010,005,001=(1,001)^{5}=7^{5} \cdot 11^{5} \cdot 13^{5} .
$$

3. A right cylindrical cone may be constructed by taking a circular disk and removing a sector from it, matching the radii together. What angle must the removed sector have so that the resulting cone is a 45° cone, that is, so if the tip is placed at the origin, $x^{2}+y^{2}=z^{2}$?

Solution: The surface area of a cone is $\pi \cdot r \cdot l$, where r is the radius and l is the side length. Suppose the original disk had radius a; this becomes the side length of the cone. If it is a right cone, the radius of the cone r satisfies $r^{2}+r^{2}=a^{2}$, or $r=\frac{a}{\sqrt{2}}=\frac{a \sqrt{2}}{2}$, so the surface area of this cone is $\frac{\sqrt{2}}{2} \pi a^{2}$.
For us, this should match the area of the portion of the disk which is used to make the cone, or $\pi a^{2}-\frac{1}{2} \theta a^{2}=\left(\pi-\frac{\theta}{2}\right) a^{2}$. Thus $\frac{\sqrt{2}}{2} \pi=\pi-\frac{\theta}{2}$, or $\theta=2 \pi-\sqrt{2} \pi=(2-\sqrt{2}) \pi$
4. Suppose S is a subset of $\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16\}$ which does not contain three integers which are pairwise relatively prime. What is the most number of elements S can have?

Solution: 11. If it is size 12 , it must contain at least three of $\{1,2,3,5,7,11,13\}$, as there are only 9 other options, and whichever three it contains will be relatively prime. Thus we know the answer is less than 12 . We claim $S=\{2,4,6,8,10,12,14,16,3,9,15\}$ has the desired property and 11 elements. Any three element subset contains either two multiples of 2 or two multiples of 3 , as every element falls into at least one of those two categories.
5. In \mathbb{Z}_{11}, integers mod 11 , what is the smallest positive value of $\log _{4}(9)$?

Solution: We can work out the powers of 4 in \mathbb{Z}_{11} and check that $4^{3} \equiv 9 \bmod 11$, so the answer is 3 .
6. Express $\cos ^{5}(x)-10 \cos ^{3}(x) \sin ^{2}(x)+5 \cos (x) \sin ^{4}(x)$ in terms of a single sin or cos function.

Solution: We know $\left(e^{i x}\right)^{5}=e^{i 5 x}$, and that $e^{i x}=\cos (x)+i \sin (x)$. Thus $\cos (5 x)$ is the real part of $(\cos (x)+i \sin (x))^{5}$, which we compute is

$$
\begin{aligned}
\cos (5 x)+i \sin (5 x)= & (\cos (x)+i \sin (x))^{5} \\
= & \left(\cos ^{2}(x)+2 i \cos (x) \sin (x)-\sin ^{2}(x)\right)^{2}(\cos (x)+i \sin (x)) \\
= & \left(\cos ^{4}(x)+2 i \cos ^{3}(x) \sin (x)-\cos ^{2}(x) \sin ^{2}(x)+2 i \cos ^{3}(x) \sin (x)\right. \\
& -4 \cos ^{2}(x) \sin ^{2}(x)-2 i \cos (x) \sin ^{3}(x)-\sin ^{2}(x) \cos ^{2}(x)-2 i \cos (x) \sin ^{3}(x) \\
& \left.+\sin ^{4}(x)\right)(\cos (x)+i \sin (x)) \\
= & \left(\cos ^{4}(x)+4 i \cos (x) \sin (x)-6 \cos ^{2}(x) \sin ^{2}(x)-4 i \cos (x) \sin ^{3}(x)\right. \\
& \left.+\sin ^{4}(x)\right)(\cos (x)+i \sin (x)) \\
= & \cos ^{5}(x)+4 i \cos ^{4}(x) \sin (x)-6 \cos ^{3}(x) \sin ^{2}(x)-4 i \cos ^{2}(x) \sin ^{3}(x) \\
& +\cos (x) \sin ^{4}(x)+i \cos ^{4}(x) \sin (x)-4 \cos ^{3}(x) \sin ^{2}(x)-6 i \cos ^{2}(x) \sin ^{3}(x) \\
& +4 \cos (x) \sin ^{4}(x)+i \sin ^{5}(x) \\
= & \cos ^{5}(x)-10 \cos ^{3}(x) \sin ^{2}(x)+5 \cos (x) \sin ^{4}(x) \\
& +i\left(\sin ^{5}(x)-10 \cos ^{2}(x) \sin ^{3}(x)+5 \cos ^{4}(x) \sin (x)\right)
\end{aligned}
$$

Thus the real part is $\cos (5 x)=\cos ^{5}(x)-10 \cos ^{3}(x) \sin ^{2}(x)+5 \cos (x) \sin ^{4}(x)$. There are other, equivalent ways to write this, now that we know it is $\cos (5 x): \cos (5 x+2 n \pi)$ or $\sin \left(5 x+\frac{\pi}{2}+2 n \pi\right)$ for any integer n.
7. Suppose, due to wind, your flight from City A to City B travels at 500 miles per hour but on the return flight from City B to City A, the flight travels 400 miles per hour. What was your average speed over the round trip?
Solution: Suppose the cities are d miles apart. The flight from A to B then takes $\frac{d}{500}$ hours, and the return flight takes $\frac{d}{400}$ hours, so in all, you traveled $2 d$ miles in $\frac{d}{500}+\frac{d}{400}=\frac{9 d}{2000}$ hours, for a rate of $\frac{2 d}{\frac{9 d}{2000}}=\frac{4000}{9}=444 . \overline{4}$ miles per hour on average.
8. Let $S_{n}=1-2+3-4+5-6+\ldots+(-1)^{n-1} n$. What is S_{2023} ?

Solution: It is easier to determine S_{n} for $n=2 k$, that is, n even. Suppose $n=2 k$. Then $S_{n}=S_{2 k}=-k$. How do we know? The sum of each consecutive pair of terms is -1 , so by adding $2 k$ terms, we have added -1 to itself k times, for a total of $2 k$. Thus $S_{2023}=S_{2022}+2023=-1011+2023=1012$.
9. Express 8989 as the difference of two squares of positive integers.

Solution: If $8989=a^{2}-b^{2}$, then we must be able to factor 8989 as the product of two numbers $8989=(a-b)(a+b)$. We compute $8989=101 \cdot 89$, so if we let $a=95$ and $b=6$, we get that $8989=89 \cdot 101=(95-6)(95+6)=95^{2}-6^{2}$. If we factored it instead as $8989=1 \cdot 8989$, we would get that $89894495^{2}-4494^{2}$.
10. Suppose $A=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right]$. What is A^{6} ?

Solution: This is easiest if we recognize A as a rotation matrix, rotating counterclockwise by $\pi / 6$. Doing this 6 times, we get rotation by π, so $A^{12}=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$. Alternatively, we could compute matrix powers using matrix multiplication.
11. Every Pythagorean triple is associated with a right triangle. Given the triple ($12,35,37$), find another triple (a, b, c) whose associated triangle has the same area (with $a \leq b<c$).
Solution: The area of the given right triangle is $A=\frac{1}{2} b h=\frac{1}{2} \cdot 12 \cdot 35=210$, so we need another factorization of 210 that gives us two legs of a right triangle. Let's try $210=10 \cdot 21=\frac{1}{2} \cdot 20 \cdot 21$. Is there an integer right triangle with legs of length 20 and 21 ? We check $\sqrt{20^{2}+21^{2}}=$ $\sqrt{400+441}=\sqrt{841}=29$, so one solution is $(20,21,29)$. This turns out to be the only factorization that works.
12. For each real number x, let $f(x)=\min (4 x+1, x+2,-2 x+4)$. What is the maximum value of $f(x)$?
Solution: By finding the point of intersections of these lines, we can write this function as a piecewise function: $f(x)= \begin{cases}4 x+1 & x \leq \frac{1}{3} \\ x+2 & \frac{1}{3} \leq x \leq \frac{2}{3} \\ -2 x+4 & \end{cases}$
This function is maximized when the slope changes from positive to negative, namely at the point $(x, f(x))=\left(\frac{2}{3}, \frac{8}{3}\right)$.
13. Suppose $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$, and $\left(x_{4}, y_{4}\right)$ are four collinear points on $y=x^{4}+6 x^{3}+2 x-9$. Find the average of the x-coordinates, that is $\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}$.
Solution: They are collinear, so they also lie on some line of the form $y=a x+b$ (since the vertical lines $x=a$ only intersect this curve once). Let's set these equations equal to each other and solve: we get $x^{4}+6 x^{3}+(2-a) x-(9+b)=0$. We don't know how to find the roots of this equation, but maybe we can find $x_{1}+x_{2}+x_{3}+x_{4}$. We see that we can expand out:

$$
\begin{aligned}
& \left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right) \\
= & x^{4}-\left(x_{1}+x_{2}+x_{3}+x_{4}\right) x^{3}+\left(x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}\right) x^{2} \\
& -\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}\right) x+x_{1} x_{2} x_{3} x_{4}
\end{aligned}
$$

Thus we have that the negative of the coefficient of x^{3} is the sum of the four roots, so we get that the average of the x-coordinates is $-6 / 4=-\frac{3}{2}$.
14. Suppose we inscribe three circles of equal radius in an equilateral triangle of side length 3 , as shown below. What is the radius of each of these three circles?

Solution: Since the triangle is equilateral, bisecting the angles gives us 30° angles. We can use this to calculate the length of the bottom (or any) side, 3, in terms of r : we get two $30^{\circ}-60^{\circ}-90^{\circ}$ right triangles giving us two factors of $\sqrt{3} r$, and then just two terms of r, for a total of $3=(2+2 \sqrt{3}) r$, so $r=\frac{3}{2+2 \sqrt{3}}=\frac{6-6 \sqrt{3}}{-8}=\frac{3 \sqrt{3}-3}{4}$.

