Name:

May, 2024

 $\underline{\text{Exercise } 1}$:

Consider the sequence of functions $f_n : [0,1] \to \mathbb{R}$ where $f_1(x) = \sin\left(\frac{\pi}{2}x\right)$, $f_2(x) = \sin\left(\frac{\pi}{2}\sin\left(\frac{\pi}{2}x\right)\right)$, $f_3(x) = \sin\left(\frac{\pi}{2}\sin\left(\frac{\pi}{2}\sin\left(\frac{\pi}{2}x\right)\right)\right)$, and so forth. Thus $f_{n+1}(x) = \sin\left(\frac{\pi}{2}f_n(x)\right)$.

- 1. Does this sequence converge pointwise on [0,1]? Prove or disprove pointwise convergence, and if the sequence converges, find the limit function f.
- 2. Does this sequence converge *uniformly* to f on [0, 1]? Prove or disprove uniform convergence.

 $\underline{\text{Exercise } 2}$:

Suppose that $f \in L^1([0,\infty))$. Let $f_n : [0,1] \to \mathbb{R}$ be defined by $f_n(x) = f(x+n)$.

- 1. Show that $f_n \to 0$ in $L^1([0,1])$.
- 2. Show that for almost every $x \in [0, 1]$, we have $\lim_{n \to \infty} f_n(x) = 0$.

 $\underline{\text{Exercise } 3}$:

Suppose $f, g \in L^{\infty}(0, 1)$ with f > 0 and g > f. Prove or disprove that we must have $\|g\|_{\infty} > \|f\|_{\infty}$.