\qquad
May, 2024

Exercise 1:
Consider the sequence of functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ where $f_{1}(x)=\sin \left(\frac{\pi}{2} x\right)$, $f_{2}(x)=\sin \left(\frac{\pi}{2} \sin \left(\frac{\pi}{2} x\right)\right), f_{3}(x)=\sin \left(\frac{\pi}{2} \sin \left(\frac{\pi}{2} \sin \left(\frac{\pi}{2} x\right)\right)\right)$, and so forth. Thus $f_{n+1}(x)=\sin \left(\frac{\pi}{2} f_{n}(x)\right)$.

1. Does this sequence converge pointwise on $[0,1]$? Prove or disprove pointwise convergence, and if the sequence converges, find the limit function f.
2. Does this sequence converge uniformly to f on $[0,1]$? Prove or disprove uniform convergence.

Exercise 2:
Suppose that $f \in L^{1}([0, \infty))$. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=$ $f(x+n)$.

1. Show that $f_{n} \rightarrow 0$ in $L^{1}([0,1])$.
2. Show that for almost every $x \in[0,1]$, we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$.

Exercise 3:

Suppose $f, g \in L^{\infty}(0,1)$ with $f>0$ and $g>f$. Prove or disprove that we must have $\|g\|_{\infty}>\|f\|_{\infty}$.

