GCE 502 (May 2024)

Problem 1.

For an invertible matrix $A \in \mathbb{R}^{n \times n}$ and a nonzero vector $b \in \mathbb{R}^{n}$, consider a linear system

$$
A x=b .
$$

Define $\|A\|_{p}=\sup _{x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}$, where $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.
(1) Show that, for any solution x of the linear system,

$$
\left\|A^{-1}\right\|_{p} \geq \frac{\|x\|_{p}}{\|b\|_{p}} \geq\|A\|_{p}^{-1}
$$

(2) If $p=2$ and A is an orthogonal matrix, show that the equality holds in the above inequality.

Problem 2.

(1) Consider a $2 n \times 2 n$ matrix $A=\left[\begin{array}{ll}P & Q \\ R & S\end{array}\right]$, where P, Q, R, S are $n \times n$ matrices. Show that, $\operatorname{det} A=\operatorname{det} P \operatorname{det} S$ if $R=0$, and $\operatorname{det} A=(-1)^{n} \operatorname{det} Q \operatorname{det} R$ if $P=0$.
(2) Suppose $B_{1}=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right] \in \mathbb{C}^{2 \times 2}$ and $B_{2} \in \mathbb{C}^{n \times n}$. Show that

$$
\operatorname{det} B_{1} \otimes B_{2}=\left(\operatorname{det} B_{1}\right)^{n}\left(\operatorname{det} B_{2}\right)^{2}
$$

where $B_{1} \otimes B_{2}$ is the Kronecker product of B_{1} and B_{2}, i.e.

$$
B_{1} \otimes B_{2}=\left[\begin{array}{ll}
b_{11} B_{2} & b_{12} B_{2} \\
b_{21} B_{2} & b_{22} B_{2}
\end{array}\right]
$$

Problem 3.

Consider a $(n+1) \times(n+1)$ matrix

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & a_{1} \\
0 & 1 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & a_{n}
\end{array}\right]
$$

(1) Show that the characteristic polynomial $p(\lambda)=\operatorname{det}(\lambda I-A)$ is given by

$$
p(\lambda)=\lambda^{n+1}-a_{n} \lambda^{n}-a_{n-1} \lambda^{n-1}-\cdots-a_{1} \lambda
$$

(2) Show that the minimal polynomial of A is equal to the characteristic polynomial $p(\lambda)$.

Problem 4.

Let A and B be two $n \times n$ diagonalizable matrices. We say that A and B share the same eigenvectors if there exists a matrix P such that $A=P D P^{-1}$ and $B=P E P^{-1}$ for some diagonal matrices D and E.
(1) Prove that, if A and B shares the same eigenvectors, then $A B=B A$.
(2) Prove that, if $A B=B A$ and A has n distinct eigenvalues, then A and B shares the same eigenvectors.
(3) Prove or disprove the following statement: If $A B=B A$, then A and B shares the same eigenvectors.

