

January, 2024

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a uniformly continuous and differentiable function. Suppose

$$\frac{f(x+h) - f(x)}{h} \rightarrow f'(x)$$

uniformly as $h \rightarrow 0$. Show that f' is uniformly continuous.

2. Show that for $C([0, 1])$ (continuous functions defined on the interval $[0, 1]$) with the L^∞ -norm, the closed unit ball centered at zero is not compact. Hint: Find a sequence in this unit ball, with no convergent subsequence.

3. Suppose $f_n, f: \mathbb{R} \rightarrow \mathbb{R}$ are measurable with $0 \leq f_n \leq f$, $f_n \rightarrow f$ a.e., and $f \in L^1(\mathbb{R})$. Show that

$$\int |\sin(f_n)| \rightarrow \int |\sin(f)|.$$