

General Comprehensive Examination
LINEAR ALGEBRA

Print Name: _____ Sign: _____

No documents, no calculators allowed.

Choose any five problems among the six problems listed below.

Unless otherwise specified, all matrices are assumed to have complex entries.

Problem 1: Find the Jordan Canonical Form of

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \end{pmatrix}$$

Problem 2: Let A be the $n \times n$ matrix which has zeros on the main diagonal and ones everywhere else. Find all the eigenvalues and eigenspaces of A and compute $\det(A)$.

Problem 3: Assume that $A \in \mathbb{C}^{n \times n}$ is a normal matrix. Prove that if (λ, v) is an eigenpair for A then $(\bar{\lambda}, v)$ is eigenpair for A^* (the adjoint of A).

Problem 4: Let T be a linear transformation of a vector space V into itself. Suppose $x \in V$ is such that $T^k x = 0$ and $T^{k-1} x \neq 0$ for some integer $k > 0$. Show that the set $\{x, Tx, \dots, T^{k-1} x\}$ is linearly independent.

Problem 5: Let A be an $n \times n$ Hermitian matrix with largest eigenvalue λ_1 . Let B be the $(n-1) \times (n-1)$ matrix obtained by deleting the first row and first column of A . If μ_1 is the largest eigenvalue of B , prove that $\mu_1 \leq \lambda_1$.

Problem 6: Let S, T be two normal operators on the finite-dimensional complex inner product space V such that $ST = TS$. Prove that there is a basis for V consisting of vectors that are eigenvectors of both S and T .