

GCE - Linear Algebra

January 2024

Exercise 1

Let H be a finite-dimensional real inner product space with an inner product $\langle \cdot, \cdot \rangle$.

- (i). Show that if $T \in \mathcal{L}(H)$ satisfies $\langle Th, h \rangle > 0$ for all nonzero $h \in H$, then T is invertible.
- (ii). If $T \in \mathcal{L}(H)$ is symmetric, show that $S = T^2 - 2T + 2I$ is invertible.
- (iii). Prove or disprove: $S = T^2 - 2T + 2I$ is invertible for any $T \in \mathcal{L}(H)$.

Exercise 2

Let A be a matrix in $K^{n \times p}$, B be a matrix in $K^{p \times n}$, where $n, p \geq 1$ are two integers and K is \mathbb{R} or \mathbb{C} .

- (i). If $n = p$ and A is invertible, show that $\det(I + AB) = \det(I + BA)$.
- (ii). Assume that AB and BA are diagonalizable. Let λ be a non-zero eigenvalue of AB with multiplicity r . Show that λ is an eigenvalue of BA with multiplicity r .
- (iii). Assume that AB and BA are diagonalizable. Show that $\det(I + AB) = \det(I + BA)$.
- (iv). Prove or disprove: if AB and BA are diagonalizable then $\det(AB) = \det(BA)$.

Exercise 3

Let V be an n -dimensional real vector space and T a linear operator on V . A subspace W in V is called as an invariant subspace (under T) if $TW \subset W$.

- (i). If n is odd, show that there exists an 1-dimensional invariant subspace.
- (ii). Prove or disprove: for any positive integer n , there exists an 1-dimensional invariant subspace.
- (iii). Prove or disprove: for any positive integer n , there exists an invariant subspace W s.t. $\dim W \leq 2$.

Exercise 4

Let A be an invertible matrix in $\mathbb{C}^{n \times n}$. Show that there is a unitary U in $\mathbb{C}^{n \times n}$ and a positive definite matrix Hermitian matrix P in $\mathbb{C}^{n \times n}$ such that $A = UP$. **Hint:** use the matrix A^*A .