

ELKE RUNDENSTEINER Professor, Computer Science

Director, Data Science

Worcester Polytechnic Institute

rundenst@cs.wpi.edu

Oct 2014

Have you heard of DATA SCIENTISTS?

SMART COLLEGE KIDS LIKE YOU WHO FIND PATTERNS IN DATA

THE HUMAN MIND IS CLEVER AT SEEING PATTERNS IN THINGS...

BUT A TRUE SCIENTIST DOESN'T JUST RELY ON HOW THINGS LOOK...

SCIENTISTS COULD USE A SIMPLE METHOD TO FIND RESULTS...

HE LOVES ME, HE LOVES ME NOT

WE USE A TRIFECTA APPROACH TO TRAIN OUR DATA SCIENTISTS.

Also known as a triple threat!

WAIT!

WHERE DO ALL THE NUMBERS OR DATA COME FROM?

EVERY TIME YOU LOG ON, PLUG IN OR CLICK BUY, YOUR 'DATA' IS SAVED.

SOCIAL MEDIA KEEPS YOUR EVERY MOVE

ALL OF THAT INFORMATION OR *DATA* IS **COLLECTED AND** STORED. SO MUCH DATA THAT IT'S NOW IN PETABYTES (10^{15})

THAT'S HOW COMPANIES TRACK YOUR PURCHASES AND ADVERTISE WHAT YOU LIKE ON YOUR Facebook PAGE.

AND HOW LIFE INSURANCE COMPANIES KNOW WHO TO INSURE.

AND HOW GOOGLE KNOWS WHAT YOU'RE SEARCHING...

PRACTICALLY INFINITE AMOUNT OF *DATA*FROM ALL OVER THE WORLD BEING STORED.

SO HOW DOES A DATA SCIENTIST MAKE SENSE OF IT ALL?

WE COMBINE COMPUTER SCIENCE SKILLS WITH MATHEMATICS, AND BUSINESS SKILLS, AND A DATA SCIENTIST CAN MAKE SENSE OF DATA!

COMPUTER SCIENCE

WHERE DO I WORK AS A DATA SCIENTIST?

ANYWHERE AND EVERYWHERE

Healthcare Companies

Social Media – Google, Yahoo, Yahoo, Bing, FB

Gaming and Video - FUN

Education – higher and lower

Trains, Planes and Automobiles

All transit companies – World wide

Telecommunications – world wide

Security Companies – I Spy...

Banks and Brokerage Firms - NYC!!

Target – Gap – All retail stores

Bottom line...

So what is a Data Scientist paid?

DATA SCIENCE NEWS
ROUNDUP:
BECOMING A PROFESSION
AT \$300/HOUR -

Forbes.com

Are there jobs out there?

BIG DATA SCIENTISTS GET 100 RECRUITER EMAILS A DAY –

Networkworld.com

Big Data - Big Opportunity

New startup opportunities

Wide range of companies looking for DS specialists

100% increase in jobs in Northeast U.S. alone

150,00 – 200,000 new jobs in analytics ANNUALLY

https://www.facebook.com/pages/WPI-DATA-Science/

DATA SCIENTIST... SEXIEST JOB OF THE 21ST CENTURY.

Harvard Business Review

DATA SCIENCE NEWS
ROUNDUP:
BECOMING A PROFESSION
AT \$300/HOUR -

Forbes.com

NOW MOBILE ANALYTICS STARTUPS
ARE HIRING DATA SCIENTISTS.
HERE'S WHY – VentureBeat.com

BIG DATA: CAREER OPPORTUNITIES

ABOUND IN TECH'S HOTTEST FIELD
Mashable

BIG DATA SCIENTISTS GET 100
RECRUITER EMAILS A DAY –

Networkworld.com

All recent news articles posted on our FB page, written by industry leaders!

IT'S THE SEXIEST JOB **OF THE 21**ST CENTURY!*

^{*} Harvard Business Review, Oct 2012.

MY RESEARCH PROJECTS

MATTERS: Economic Analytics Dashboard For Massachusetts

Massachusetts Technology, Talent and Economy Reporting System: MATTERS

For Massachusetts High Tech Council
By WPI Team composed of over 10 students including
Ramoza Ashan, Rodica Neamtu, and Caitlin Kuhlman, and
many others

Project Goals

- Create and host an analytics platform that:
 - Represents an integrative data resource on high fidelity cost and talent competitive metrics,
 - Provides ease of access via web-based dashboard
 - Offers data-driven analysis capabilities supported by descriptive and predictive modeling,
- to:
 - help MHTC advocate for Massachusetts becoming a state attractive for business

5/9/2014

MATTERS Overview

Data Sources

5/9/2014 26

Data Metrics

1. State and Local Tax Burden "per capita" and "% of personal income"

2. Economy: Total Employment

3. Economy: Tech Employment

4. Economy Unemployment Rate

5. Talent Development Metrics

6. Unemployment Insurance Payroll Tax

Challenges with Data Sources

- Diversity of data sources & formats
- Excel files containing unstructured text
- Data not available for contiguous years
- Inconsistent data representations
- Some metrics composed across multiple sources
- Data must be transformed to be integrated
- Sources update data sporadically
- Data extraction is a complex custom process

5/9/2014 28

Data Cleaning: Uniformity & Consistency

5/9/2014 29

Diversity of Data Sets

State Government Tax Collections:									
Government	Total Taxes	Taxes	Sales and Gross Receipts Taxes	License Taxes	Income Taxes	Other Taxes			
United States	798,221,675	13,104,336	377,541,72	54,090,961	322,654,16	30,830,487			
Alabama	9,049,294	321,530	4,626,357	517,676	3,430,690	153,041			
Alaska	7,049,398	215,407	248,432	135,055	663,144	5,787,360			
Arizona	12,973,265	754,428	8,066,124	370,222	3,741,713	40,778			
Arkansas	8,284,500	1,008,707	3,982,832	355,768	2,805,985	131,208			
California	115,089,654	2,079,878	41,341,188	8,658,041	62,973,435	37,112			

SA1-3 Personal income summary

Bureau of Economic Analysis

State or DC

	Area	Description	2008	2009	2010	2011	2012
	California	Personal income (thousands of dollars)	1.596E+09	1.536E+09	1579148473	1683203700	1768039281
	California	Population (persons) 1/	36604337	36961229	37334410	37683933	38041430
	California	Per capita personal income (dollars) 2/	43609	41569	42297	44666	46477
	Colorado	Personal income (thousands of dollars)	212243112	206422648	210607673	226031916	237461494
	Colorado	Population (persons) 1/	4889730	4972195	5048472	5116302	5187582
	Colorado	Per capita personal income (dollars) 2/	43406	41515	41717	44179	45775
	Connecticut	Personal income (thousands of dollars)	198981824	191312735	197839341	207161731	214297085
	Connecticut	Population (persons) 1/	_{5/9} 3545579	3561807	3576616	3586717	3590347
	Connecticut	Per capita personal income (dollars) 2/	56121	53712	55315	57758	59687

Explosion of Formats: Tame the Diversity?

5/9/2014 31

Tame the Diversity: Towards a Unified Schema

MATTERS Dashboard: Make an Impact on your Community

5/9/2014 33

Learn Technologies

o Framework:

O Data stores:

Web charting packages:

- Shared document management:
- Project management:

<u>UMASS Medical Center:</u> <u>Tracking for Infection Control</u>

With Di Wang, Prof. Ellison, Mo Liu, Medhabi Ray, etc.

Health Care Application: Infection Control

Data Sources

RFID Input

RFID Input

RFID Input

Put on mask for H₁N₁ contagious patients

Wash your hands before touching next patients

REID Input Track workers Detect hygiene violations

> Aggregate statistics for a hospital

Complex Event Analysis:

Large number of related complex CEP queries over stream data at different abstractions

Complex Event Processing

- Event Stream: Continuous stream of event instances
- Sequence patterns: matched against event stream

Example:

PATTERN SEQ(OpRoom1, ! Disinfection Area, OpRoom2)[id]
WITHIN 5 minutes

Time

Ecube Hierarchy

Q1: SEQ(Contaminated Areas, NOT Disinfection Area, Operating Rooms)
WITHIN1 hour

Q2: SEQ(Contaminated Areas, NOT D1, Clean Rooms, Operating Rooms)
WITHIN 1 hour

Concept

attern-roll-un

Concept

Q3: SEQ(Contaminated Areas, NOT Disinfection Area, OR 1)
WITHIN1 hour

Q4: SEQ(Contaminated Areas, NOT Disinfection Area, Clean Rooms, Operating Rooms)

WITHIN 1 hour

Pattern Concept

Concept

Q5: Break Rooms, NOT Disinfection Area, Clean Rooms, OR 1) WITHIN 1 hour

- Pattern-drill-down
- Pattern-roll-up
- Concept-drill-down
- Concept-roll-up

Emotex: Emotion Detection in Social and Smartphone Sensors

With Maryam Hasan, Prof. Agu and others

Textual Sensors: Twitter

 Microblog tools such as Twitter express their feelings and opinions in the form of short text messages.

Emotion	Tweets					
Нарру	So many weddings coming up how exciting is that					
	Excited to see him in Texas in two weeks					
Relaxed	I feel so at peace right now					
	The sound of rain always puts me to sleep					
Stressed	 Presentation? I'm feeling like I'm waiting to get an injection 					
	Seriously stressed over this final.					
Depressed	RIP Grandpa, you will be missed.					
	 I'm just so #depressed and on the verge of crying 					

Objective: Learn about Emotional State of the Author of a Message.

Emotional States: Circumplex Model

Challenges of Analyzing Microblogs

- What are Microblogs :
 - short terse textual messages
 - casual style of expression
 - grammatical and spelling errors
- Examples of Microblogs:
 - I'm soo happyyy I have such wonderful people in my life!
 - Its always a good feeling to know dat the person ur friend has a crush on, actually likes u.
- Challenges:
 - Requires labeled data required for training.
 - Must handle high dimensional and sparse feature vectors
 - Use Twitter #hash-tags as noisy labels

Model of EMOTEX

Figure 2- Model of EMOTEX

Data Cleaning

Data Cleaning

Resolving Conflicts

Removing Hash-tags

Replace:

- Http links with URL,
- User Names with UID (e.g.@Marilyn)
- Repeated characters with two characters (e.g. happyyyyy)

Resolves:

- Hash-tag conflicts(e.g. #sleepy #happy)
- Emoticon conflicts
- (e.g. :)) :-(()
- Tag-Emoticon conflicts

```
(e.g. :(( #excited )
```

Removes:

 Hash-tags from the end of Tweets

Supervised Learning Approach

Represents each message by a D-dimensional feature vector:

$$F = (f_1, \ldots, f_D) \in R_D$$

- Mark each message by a label
- Train learning algorithm on labeled messages

Selecting Features

Figure 4- Feature Selection

Emoticon Features

Category	Emoticons		
Happy Emoticons	:) ;) =) :] :p ;p :D ;D :> :3 :-) ;-) :^) :o) :~) ;^) ;o) :') :-D :->		
Sad Emoticons	:(=(:-(:^(:o(:^(:'(:-<		
Angry Emoticons	>:S >:{ >: x-@ :@ :-@ :-/ :-\		
Afraid/Surprised Emoticons	:-o :-O o_O O_o :\$		
Sleepy Emoticons	~_~		

Unigram Features

- Single Words in our training data such as:
 - excited, sad, hope, hate,...
- Problem:
 - Huge number of unigrams in training data
 - Sparse feature vector of each tweet
- Solution:
 - Using emotional unigrams from Emotion lexicons: LIWC (Linguistic Inquiry and Word Count)

James W. Pennebaker, Roger J. Booth, and Martha E. Francis, University of Texas, 2007, http://www.liwc.net/

Twitter Data

200,000 tweets collected before 2014 and after 2014.

Figure 5 - Distribution of the emotions during new year vacation and after it

Results: Classification accuracy of SVM, KNN, Naïve Bayes, Decision Tree

	Unigram	Unigram, Emoticon	Unigram, Punctuation	Unigram, Negation	All Features
SVM	89.86	88.92	89.59	88.97	89.36
Naïve Bayes	86.27	86.40	86.61	86.91	86.95
Decision Tree	89.48	89.59	89.72	89.62	89.93
KNN	90.10	90.07	90.10	90.14	90.13

Table 4- Classification accuracy of different methods using different features

Conclusion

- Cool Science and Engineering to be done
- Data-driven projects are here to stay
- Learn something new rewarding personally
- Impactful on community, economy, health...

Thank you to My Collaborators

Work produced in collaboration with students and colleagues, including Mo Liu, Di Wang, Medhabi Ray, Kara Greenfield, Tonje Stolpestad, Dick Ellison, Dan Dougherty, Yingmei Qi, Dazhi Zhang, Chetan Gupta, Ismail Ari, Song Wang, Abhay Mehta, Matt Ward, Di Yang, Abhishek Mukherji, Mohamed Eltabakh, Avani Shastri, Mani Murali, Karen Works, Chuan Lei, Lei Cao, Yingmei Qi, Prof. Agu, Maryam Hasan, Ramoza Ashan, Rodica Neamtu, and many **Others...**

The credit for the work all goes to them! I am just the messenger!

